Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
FT150100426
Australian Research Council (ARC) - International
PubMed
30097562
PubMed Central
PMC6086834
DOI
10.1038/s41467-018-05543-4
PII: 10.1038/s41467-018-05543-4
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Coordination chemistry relies on harnessing active metal sites within organic matrices. Polynuclear complexes-where organic ligands bind to several metal atoms-are relevant due to their electronic/magnetic properties and potential for functional reactivity pathways. However, their synthesis remains challenging; few geometries and configurations have been achieved. Here, we synthesise-via supramolecular chemistry on a noble metal surface-one-dimensional metal-organic nanostructures composed of terpyridine (tpy)-based molecules coordinated with well-defined polynuclear iron clusters. Combining low-temperature scanning probe microscopy and density functional theory, we demonstrate that the coordination motif consists of coplanar tpy's linked via a quasi-linear tri-iron node in a mixed (positive-)valence metal-metal bond configuration. This unusual linkage is stabilised by local accumulation of electrons between cations, ligand and surface. The latter, enabled by bottom-up on-surface synthesis, yields an electronic structure that hints at a chemically active polynuclear metal centre, paving the way for nanomaterials with novel catalytic/magnetic functionalities.
Australian Synchrotron 800 Blackburn Road Clayton Victoria 3168 Australia
Institute of Physics of the CAS Cukrovarnicka 10 Prague 16200 Czech Republic
Monash Centre for Atomically Thin Materials Monash University 20 Research Way Clayton 3800 Australia
RCPTM Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
School of Physics and Astronomy Monash University 19 Rainforest Walk Clayton 3800 Australia
See more in PubMed
Zhou HC, Kitagawa S. Metal-organic frameworks (MOFs) Chem. Soc. Rev. 2014;43:5415–5418. doi: 10.1039/C4CS90059F. PubMed DOI
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI
Xu H, et al. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014;43:3259–3302. doi: 10.1039/C3CS60449G. PubMed DOI
Hardin BE, Snaith HJ, McGehee MD. The renaissance of dye-sensitized solar cells. Nat. Photonics. 2012;6:162–169. doi: 10.1038/nphoton.2012.22. DOI
Prier CK, Rankic DA, MacMillan DWC. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013;113:5322–5363. doi: 10.1021/cr300503r. PubMed DOI PMC
Das LK, et al. Di-, tri-, and tetranuclear nickel(II) complexes with oximato bridges: magnetism and catecholase-like activity of two tetranuclear complexes possessing rhombic topology. Inorg. Chem. 2013;52:11744–11757. doi: 10.1021/ic401020m. PubMed DOI
Klingele J, Dechert S, Meyer F. Polynuclear transition metal complexes of metal⋯metal-bridging compartmental pyrazolate ligands. Coord. Chem. Rev. 2009;253:2698–2741. doi: 10.1016/j.ccr.2009.03.026. DOI
Berry JF, Lu CC. Metal–metal bonds: from fundamentals to applications. Inorg. Chem. 2017;56:7577–7581. doi: 10.1021/acs.inorgchem.7b01330. PubMed DOI
Kornecki KP, Berry JF, Powers DC, Ritter T. Metal-metal bond-containing complexes as catalysts for C-H functionalization. Prog. Inorg. Chem. 2014;58:225–302.
F. A Cotton, C. A. Murillo, R. A. Walton . Multiple Bonds Between Metal Atoms. New York: Springer Science & Business Media,; 2005.
Fischer RC, Power PP. π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the New Millennium. Chem. Rev. 2010;110:3877–3923. doi: 10.1021/cr100133q. PubMed DOI
Ludwig JR, Zimmerman PM, Gianino JB, Schindler CS. Iron(III)-catalysed carbonyl–olefin metathesis. Nature. 2016;533:374–379. doi: 10.1038/nature17432. PubMed DOI
Barth JV. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007;58:375–407. doi: 10.1146/annurev.physchem.56.092503.141259. PubMed DOI
Gutzler R, Stepanow S, Grumelli D, Lingenfelder M, Kern K. Mimicking enzymatic active sites on surfaces for energy conversion chemistry. Acc. Chem. Res. 2015;48:2132–2139. doi: 10.1021/acs.accounts.5b00172. PubMed DOI
Grumelli D, Wurster B, Stepanow S, Kern K. Bio-inspired nanocatalysts for the oxygen reduction reaction. Nat. Commun. 2013;4:2904. doi: 10.1038/ncomms3904. PubMed DOI
Lin T, Kuang G, Wang W, Lin N. Two-dimensional lattice of out-of-plane dinuclear iron centers exhibiting Kondo resonance. ACS Nano. 2014;8:8310–8316. doi: 10.1021/nn502765g. PubMed DOI
Wang W, et al. Inspecting metal-coordination-induced perturbation of molecular ligand orbitals at a submolecular resolution. J. Phys. Chem. Lett. 2010;1:2295–2298. doi: 10.1021/jz100855k. DOI
Mugarza A, et al. Electronic and magnetic properties of molecule-metal interfaces: transition-metal phthalocyanines adsorbed on Ag(100) Phys. Rev. B. 2012;85:155437. doi: 10.1103/PhysRevB.85.155437. DOI
Capsoni M, et al. Selective hybridization of a terpyridine-based molecule with a noble metal. J. Phys. Chem. C. 2017;121:23574–23581. doi: 10.1021/acs.jpcc.7b08576. DOI
Pavliček N, Gross L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 2017;1:0005. doi: 10.1038/s41570-016-0005. DOI
Moll N, et al. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano. Lett. 2014;14:6127–6131. doi: 10.1021/nl502113z. PubMed DOI
Pawlak R, et al. Design and characterization of an electrically powered single molecule on gold. ACS Nano. 2017;11:9930–9940. doi: 10.1021/acsnano.7b03955. PubMed DOI
Constable EC. 2,2′:6′,2″-terpyridines: from chemical obscurity to common supramolecular motifs. Chem. Soc. Rev. 2007;36:246–253. doi: 10.1039/B601166G. PubMed DOI
Nance J, Bowman DN, Mukherjee S, Kelley CT, Jakubikova E. Insights into the spin-state transitions in [Fe(tpy)2]2+: importance of the terpyridine rocking motion. Inorg. Chem. 2015;54:11259–11268. doi: 10.1021/acs.inorgchem.5b01747. PubMed DOI
Wang Y, Zhou K, Shi Z, Ma YQ. Structural reconstruction and spontaneous formation of Fe polynuclears: a self-assembly of Fe-porphyrin coordination chains on Au(111) revealed by scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2016;18:14273–14278. doi: 10.1039/C6CP01836J. PubMed DOI
Mohn F, Gross L, Moll N, Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI
Albrecht F, et al. Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 2015;115:076101. doi: 10.1103/PhysRevLett.115.076101. PubMed DOI
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI
Raebiger H, Lany S, Zunger A. Charge self-regulation upon changing the oxidation state of transition metals in insulators. Nature. 2008;453:763–766. doi: 10.1038/nature07009. PubMed DOI
Reeves KG, Kanai Y. Theoretical oxidation state analysis of Ru-(bpy)3: influence of water solvation and Hubbard correction in first-principles calculations. J. Chem. Phys. 2014;141:024305. doi: 10.1063/1.4886406. PubMed DOI
Guo N, Xi Y, Liu S, Zhang C. Greatly enhancing catalytic activity of graphene by doping the underlying metal substrate. Sci. Rep. 2015;5:12058. doi: 10.1038/srep12058. PubMed DOI PMC
Delferro M, Marks TJ. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011;111:2450–2485. doi: 10.1021/cr1003634. PubMed DOI
Powers IG, Uyeda C. Metal-metal bonds in catalysis. ACS Catal. 2017;7:936–958. doi: 10.1021/acscatal.6b02692. DOI
Gunay A, Theopold KH. C-H bond activations by metal oxo compounds. Chem. Rev. 2010;110:1060–1081. doi: 10.1021/cr900269x. PubMed DOI
Huang XY, Groves JT. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J. Biol. Inorg. Chem. 2017;22:185–207. doi: 10.1007/s00775-016-1414-3. PubMed DOI PMC
Das A, Reibenspies JH, Chen YS, Powers DC. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 2017;139:2912–2915. doi: 10.1021/jacs.6b13357. PubMed DOI
Sanchez RH, Bartholomew AK, Powers TM, Menard G, Betley TA. Maximizing electron exchange in a [Fe3] cluster. J. Am. Chem. Soc. 2016;138:2235–2243. doi: 10.1021/jacs.5b12181. PubMed DOI PMC
Jelinek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter. 2017;29:343002. doi: 10.1088/1361-648X/aa76c7. PubMed DOI
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Sun Z, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P. Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 2011;106:046104. doi: 10.1103/PhysRevLett.106.046104. PubMed DOI
Zandvliet HJW, van Houselt A. Scanning tunneling spectroscopy. Ann. Rev. Anal. Chem. 2009;2:37–55. doi: 10.1146/annurev-anchem-060908-155213. PubMed DOI
Giessibl, F.J., in Noncontact Atomic Force Microscopy (eds Morita, S., Giessibl, F. J, Wiesendanger, R.,). 121–142 (Springer: Berlin, Heidelberg, 2009).
König T, et al. Measuring the charge state of point defects on MgO/Ag(001) J. Am. Chem. Soc. 2009;131:17544–17545. doi: 10.1021/ja908049n. PubMed DOI
Moresco F. Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 2004;399:175–225. doi: 10.1016/j.physrep.2004.08.001. DOI
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B. 1998;57:1505–1509. doi: 10.1103/PhysRevB.57.1505. DOI
Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 2009;21:084204. doi: 10.1088/0953-8984/21/8/084204. PubMed DOI
Hapala P, et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 2016;7:11560. doi: 10.1038/ncomms11560. PubMed DOI PMC
Peng J, et al. Weakly perturbative imaging of interfacial waterwith submolecular resolution by atomic forcemicroscopy. Nat. Commun. 2018;9:122. doi: 10.1038/s41467-017-02635-5. PubMed DOI PMC
Körzdörfer T, Brédas JL. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc. Chem. Res. 2014;47:3284–3291. doi: 10.1021/ar500021t. PubMed DOI