• This record comes from PubMed

Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation

. 2018 Aug 10 ; 9 (1) : 3211. [epub] 20180810

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
FT150100426 Australian Research Council (ARC) - International

Links

PubMed 30097562
PubMed Central PMC6086834
DOI 10.1038/s41467-018-05543-4
PII: 10.1038/s41467-018-05543-4
Knihovny.cz E-resources

Coordination chemistry relies on harnessing active metal sites within organic matrices. Polynuclear complexes-where organic ligands bind to several metal atoms-are relevant due to their electronic/magnetic properties and potential for functional reactivity pathways. However, their synthesis remains challenging; few geometries and configurations have been achieved. Here, we synthesise-via supramolecular chemistry on a noble metal surface-one-dimensional metal-organic nanostructures composed of terpyridine (tpy)-based molecules coordinated with well-defined polynuclear iron clusters. Combining low-temperature scanning probe microscopy and density functional theory, we demonstrate that the coordination motif consists of coplanar tpy's linked via a quasi-linear tri-iron node in a mixed (positive-)valence metal-metal bond configuration. This unusual linkage is stabilised by local accumulation of electrons between cations, ligand and surface. The latter, enabled by bottom-up on-surface synthesis, yields an electronic structure that hints at a chemically active polynuclear metal centre, paving the way for nanomaterials with novel catalytic/magnetic functionalities.

See more in PubMed

Zhou HC, Kitagawa S. Metal-organic frameworks (MOFs) Chem. Soc. Rev. 2014;43:5415–5418. doi: 10.1039/C4CS90059F. PubMed DOI

Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI

Xu H, et al. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014;43:3259–3302. doi: 10.1039/C3CS60449G. PubMed DOI

Hardin BE, Snaith HJ, McGehee MD. The renaissance of dye-sensitized solar cells. Nat. Photonics. 2012;6:162–169. doi: 10.1038/nphoton.2012.22. DOI

Prier CK, Rankic DA, MacMillan DWC. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013;113:5322–5363. doi: 10.1021/cr300503r. PubMed DOI PMC

Das LK, et al. Di-, tri-, and tetranuclear nickel(II) complexes with oximato bridges: magnetism and catecholase-like activity of two tetranuclear complexes possessing rhombic topology. Inorg. Chem. 2013;52:11744–11757. doi: 10.1021/ic401020m. PubMed DOI

Klingele J, Dechert S, Meyer F. Polynuclear transition metal complexes of metal⋯metal-bridging compartmental pyrazolate ligands. Coord. Chem. Rev. 2009;253:2698–2741. doi: 10.1016/j.ccr.2009.03.026. DOI

Berry JF, Lu CC. Metal–metal bonds: from fundamentals to applications. Inorg. Chem. 2017;56:7577–7581. doi: 10.1021/acs.inorgchem.7b01330. PubMed DOI

Kornecki KP, Berry JF, Powers DC, Ritter T. Metal-metal bond-containing complexes as catalysts for C-H functionalization. Prog. Inorg. Chem. 2014;58:225–302.

F. A Cotton, C. A. Murillo, R. A. Walton . Multiple Bonds Between Metal Atoms. New York: Springer Science & Business Media,; 2005.

Fischer RC, Power PP. π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the New Millennium. Chem. Rev. 2010;110:3877–3923. doi: 10.1021/cr100133q. PubMed DOI

Ludwig JR, Zimmerman PM, Gianino JB, Schindler CS. Iron(III)-catalysed carbonyl–olefin metathesis. Nature. 2016;533:374–379. doi: 10.1038/nature17432. PubMed DOI

Barth JV. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007;58:375–407. doi: 10.1146/annurev.physchem.56.092503.141259. PubMed DOI

Gutzler R, Stepanow S, Grumelli D, Lingenfelder M, Kern K. Mimicking enzymatic active sites on surfaces for energy conversion chemistry. Acc. Chem. Res. 2015;48:2132–2139. doi: 10.1021/acs.accounts.5b00172. PubMed DOI

Grumelli D, Wurster B, Stepanow S, Kern K. Bio-inspired nanocatalysts for the oxygen reduction reaction. Nat. Commun. 2013;4:2904. doi: 10.1038/ncomms3904. PubMed DOI

Lin T, Kuang G, Wang W, Lin N. Two-dimensional lattice of out-of-plane dinuclear iron centers exhibiting Kondo resonance. ACS Nano. 2014;8:8310–8316. doi: 10.1021/nn502765g. PubMed DOI

Wang W, et al. Inspecting metal-coordination-induced perturbation of molecular ligand orbitals at a submolecular resolution. J. Phys. Chem. Lett. 2010;1:2295–2298. doi: 10.1021/jz100855k. DOI

Mugarza A, et al. Electronic and magnetic properties of molecule-metal interfaces: transition-metal phthalocyanines adsorbed on Ag(100) Phys. Rev. B. 2012;85:155437. doi: 10.1103/PhysRevB.85.155437. DOI

Capsoni M, et al. Selective hybridization of a terpyridine-based molecule with a noble metal. J. Phys. Chem. C. 2017;121:23574–23581. doi: 10.1021/acs.jpcc.7b08576. DOI

Pavliček N, Gross L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 2017;1:0005. doi: 10.1038/s41570-016-0005. DOI

Moll N, et al. Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. Nano. Lett. 2014;14:6127–6131. doi: 10.1021/nl502113z. PubMed DOI

Pawlak R, et al. Design and characterization of an electrically powered single molecule on gold. ACS Nano. 2017;11:9930–9940. doi: 10.1021/acsnano.7b03955. PubMed DOI

Constable EC. 2,2′:6′,2″-terpyridines: from chemical obscurity to common supramolecular motifs. Chem. Soc. Rev. 2007;36:246–253. doi: 10.1039/B601166G. PubMed DOI

Nance J, Bowman DN, Mukherjee S, Kelley CT, Jakubikova E. Insights into the spin-state transitions in [Fe(tpy)2]2+: importance of the terpyridine rocking motion. Inorg. Chem. 2015;54:11259–11268. doi: 10.1021/acs.inorgchem.5b01747. PubMed DOI

Wang Y, Zhou K, Shi Z, Ma YQ. Structural reconstruction and spontaneous formation of Fe polynuclears: a self-assembly of Fe-porphyrin coordination chains on Au(111) revealed by scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2016;18:14273–14278. doi: 10.1039/C6CP01836J. PubMed DOI

Mohn F, Gross L, Moll N, Meyer G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 2012;7:227–231. doi: 10.1038/nnano.2012.20. PubMed DOI

Albrecht F, et al. Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 2015;115:076101. doi: 10.1103/PhysRevLett.115.076101. PubMed DOI

Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI

Raebiger H, Lany S, Zunger A. Charge self-regulation upon changing the oxidation state of transition metals in insulators. Nature. 2008;453:763–766. doi: 10.1038/nature07009. PubMed DOI

Reeves KG, Kanai Y. Theoretical oxidation state analysis of Ru-(bpy)3: influence of water solvation and Hubbard correction in first-principles calculations. J. Chem. Phys. 2014;141:024305. doi: 10.1063/1.4886406. PubMed DOI

Guo N, Xi Y, Liu S, Zhang C. Greatly enhancing catalytic activity of graphene by doping the underlying metal substrate. Sci. Rep. 2015;5:12058. doi: 10.1038/srep12058. PubMed DOI PMC

Delferro M, Marks TJ. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011;111:2450–2485. doi: 10.1021/cr1003634. PubMed DOI

Powers IG, Uyeda C. Metal-metal bonds in catalysis. ACS Catal. 2017;7:936–958. doi: 10.1021/acscatal.6b02692. DOI

Gunay A, Theopold KH. C-H bond activations by metal oxo compounds. Chem. Rev. 2010;110:1060–1081. doi: 10.1021/cr900269x. PubMed DOI

Huang XY, Groves JT. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J. Biol. Inorg. Chem. 2017;22:185–207. doi: 10.1007/s00775-016-1414-3. PubMed DOI PMC

Das A, Reibenspies JH, Chen YS, Powers DC. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 2017;139:2912–2915. doi: 10.1021/jacs.6b13357. PubMed DOI

Sanchez RH, Bartholomew AK, Powers TM, Menard G, Betley TA. Maximizing electron exchange in a [Fe3] cluster. J. Am. Chem. Soc. 2016;138:2235–2243. doi: 10.1021/jacs.5b12181. PubMed DOI PMC

Jelinek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys. Condens. Matter. 2017;29:343002. doi: 10.1088/1361-648X/aa76c7. PubMed DOI

Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Sun Z, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P. Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 2011;106:046104. doi: 10.1103/PhysRevLett.106.046104. PubMed DOI

Zandvliet HJW, van Houselt A. Scanning tunneling spectroscopy. Ann. Rev. Anal. Chem. 2009;2:37–55. doi: 10.1146/annurev-anchem-060908-155213. PubMed DOI

Giessibl, F.J., in Noncontact Atomic Force Microscopy (eds Morita, S., Giessibl, F. J, Wiesendanger, R.,). 121–142 (Springer: Berlin, Heidelberg, 2009).

König T, et al. Measuring the charge state of point defects on MgO/Ag(001) J. Am. Chem. Soc. 2009;131:17544–17545. doi: 10.1021/ja908049n. PubMed DOI

Moresco F. Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 2004;399:175–225. doi: 10.1016/j.physrep.2004.08.001. DOI

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B. 1998;57:1505–1509. doi: 10.1103/PhysRevB.57.1505. DOI

Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 2009;21:084204. doi: 10.1088/0953-8984/21/8/084204. PubMed DOI

Hapala P, et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 2016;7:11560. doi: 10.1038/ncomms11560. PubMed DOI PMC

Peng J, et al. Weakly perturbative imaging of interfacial waterwith submolecular resolution by atomic forcemicroscopy. Nat. Commun. 2018;9:122. doi: 10.1038/s41467-017-02635-5. PubMed DOI PMC

Körzdörfer T, Brédas JL. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc. Chem. Res. 2014;47:3284–3291. doi: 10.1021/ar500021t. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...