RECQ4-MUS81 interaction contributes to telomere maintenance with implications to Rothmund-Thomson syndrome
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
21-22593X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
39900600
PubMed Central
PMC11791078
DOI
10.1038/s41467-025-56518-1
PII: 10.1038/s41467-025-56518-1
Knihovny.cz E-zdroje
- MeSH
- chromozomální nestabilita MeSH
- DNA vazebné proteiny * metabolismus genetika MeSH
- endonukleasy MeSH
- helikasy RecQ * metabolismus genetika MeSH
- homeostáza telomer * MeSH
- lidé MeSH
- mutace MeSH
- replikace DNA MeSH
- Rothmundův-Thomsonův syndrom * genetika metabolismus MeSH
- segregace chromozomů MeSH
- telomery * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny * MeSH
- endonukleasy MeSH
- helikasy RecQ * MeSH
- MUS81 protein, human MeSH Prohlížeč
- RECQL4 protein, human MeSH Prohlížeč
Replication stress, particularly in hard-to-replicate regions such as telomeres and centromeres, leads to the accumulation of replication intermediates that must be processed to ensure proper chromosome segregation. In this study, we identify a critical role for the interaction between RECQ4 and MUS81 in managing such stress. We show that RECQ4 physically interacts with MUS81, targeting it to specific DNA substrates and enhancing its endonuclease activity. Loss of this interaction, results in significant chromosomal segregation defects, including the accumulation of micronuclei, anaphase bridges, and ultrafine bridges (UFBs). Our data further demonstrate that the RECQ4-MUS81 interaction plays an important role in ALT-positive cells, where MUS81 foci primarily colocalise with telomeres, highlighting its role in telomere maintenance. We also observe that a mutation associated with Rothmund-Thomson syndrome, which produces a truncated RECQ4 unable to interact with MUS81, recapitulates these chromosome instability phenotypes. This underscores the importance of RECQ4-MUS81 in safeguarding genome integrity and suggests potential implications for human disease. Our findings demonstrate the RECQ4-MUS81 interaction as a key mechanism in alleviating replication stress at hard-to-replicate regions and highlight its relevance in pathological conditions such as RTS.
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 A7 Brno 62500 Czech Republic
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 Brno 61200 Czech Republic
Zobrazit více v PubMed
Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu Rev. Pathol.10, 425–448 (2015). PubMed
Wassing, I. E. & Esashi, F. RAD51: Beyond the break. Semin Cell Dev. Biol.113, 38–46 (2021). PubMed PMC
Li, Z. et al. hDNA2 nuclease/helicase promotes centromeric DNA replication and genome stability. EMBO J.37, e96729 (2018). PubMed PMC
Tiwari, A., Addis Jones, O. & Chan, K.-L. 53BP1 can limit sister-chromatid rupture and rearrangements driven by a distinct ultrafine DNA bridging-breakage process. Nat. Commun.9, 677 (2018). PubMed PMC
Peripolli, S. et al. Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner. Nat. Commun.15, 1579 (2024). PubMed PMC
Segeren, H. A., van Liere, E. A., Riemers, F. M., de Bruin, A. & Westendorp, B. Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene41, 2719–2733 (2022). PubMed PMC
Aird, K. M. et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep.3, 1252–1265 (2013). PubMed PMC
Ait Saada, A., Lambert, S. A. E. & Carr, A. M. Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Rep. (Amst.)71, 135–147 (2018). PubMed PMC
Sarbajna, S., Davies, D. & West, S. C. Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev.28, 1124–1136 (2014). PubMed PMC
Pepe, A. & West, S. C. MUS81-EME2 promotes replication fork restart. Cell Rep.7, 1048–1055 (2014). PubMed PMC
Mazina, O. M. & Mazin, A. V. Human Rad54 protein stimulates human Mus81-Eme1 endonuclease. Proc. Natl Acad. Sci. USA105, 18249–18254 (2008). PubMed PMC
Chavdarova, M. et al. Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res.43, 3626–3642 (2015). PubMed PMC
Murfuni, I. et al. The WRN and MUS81 proteins limit cell death and genome instability following oncogene activation. Oncogene32, 610–620 (2013). PubMed
Zhang, R. et al. BLM helicase facilitates Mus81 endonuclease activity in human cells. Cancer Res.65, 2526–2531 (2005). PubMed
Parvathaneni, S. & Sharma, S. The DNA repair helicase RECQ1 has a checkpoint-dependent role in mediating DNA damage responses induced by gemcitabine. J. Biol. Chem.294, 15330–15345 (2019). PubMed PMC
Di Marco, S. et al. RECQ5 helicase cooperates with MUS81 endonuclease in processing stalled replication forks at common fragile sites during mitosis. Mol. Cell66, 658–671.e8 (2017). PubMed
Mannuss, A. et al. RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. Plant Cell22, 3318–3330 (2010). PubMed PMC
Hoki, Y. et al. Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum. Mol. Genet.12, 2293–2299 (2003). PubMed
Kliszczak, M. et al. Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget6, 40464–40479 (2015). PubMed PMC
Sedlackova, H., Cechova, B., Mlcouskova, J. & Krejci, L. RECQ4 selectively recognizes Holliday junctions. DNA Rep. (Amst.)30, 80–89 (2015). PubMed
Kellermayer, R. The versatile RECQL4. Genet Med.8, 213–216 (2006). PubMed
Zhunussova, G. et al. Mutation spectrum of cancer-associated genes in patients with early onset of colorectal cancer. Front Oncol.9, 673 (2019). PubMed PMC
Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell174, 1347–1360 (2018). PubMed PMC
Papageorgiou, A. C. et al. Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase. Nat. Commun.14, 6751 (2023). PubMed PMC
Yokoyama, H. et al. Chromosome alignment maintenance requires the MAP RECQL4, mutated in the Rothmund-Thomson syndrome. Life Sci. Alliance2, e201800120 (2019). PubMed PMC
Ke, Y. et al. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution. EMBO J.30, 3309–3321 (2011). PubMed PMC
Zeng, S. et al. Telomere recombination requires the MUS81 endonuclease. Nat. Cell Biol.11, 616–623 (2009). PubMed PMC
Scheel, C. et al. Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene20, 3835–3844 (2001). PubMed
Wyatt, H. D. M., Sarbajna, S., Matos, J. & West, S. C. Coordinated actions of SLX1-SLX4 and MUS81-EME1 for holliday junction resolution in human cells. Mol. Cell52, 234–247 (2013). PubMed
Chan, Y. W. & West, S. C. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat. Commun.5, 4844 (2014). PubMed PMC
Xu, X., Chang, C.-W., Li, M., Liu, C. & Liu, Y. Molecular Mechanisms of the RECQ4 Pathogenic Mutations. Front Mol. Biosci.8, 791194 (2021). PubMed PMC
Balraj, P. et al. An unusual mutation in RECQ4 gene leading to Rothmund-Thomson syndrome. Mutat. Res.508, 99–105 (2002). PubMed
Chan, Y. W. & West, S. C. A new class of ultrafine anaphase bridges generated by homologous recombination. Cell Cycle17, 2101–2109 (2018). PubMed PMC
Wilhelm, T., Said, M. & Naim, V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes (Basel)11, 642 (2020). PubMed PMC
Hengeveld, R. C. C. et al. Rif1 is required for resolution of ultrafine DNA bridges in anaphase to ensure genomic stability. Dev. Cell34, 466–474 (2015). PubMed
Stok, C. et al. FIRRM/C1orf112 is synthetic lethal with PICH and mediates RAD51 dynamics. Cell Rep.42, 112668 (2023). PubMed
Mann, M. B. et al. Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum. Mol. Genet14, 813–825 (2005). PubMed
Ghosh, A. K. et al. RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. J. Biol. Chem.287, 196–209 (2012). PubMed PMC
Magidson, V. et al. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat. Cell Biol.17, 1134–1144 (2015). PubMed PMC
Mankouri, H. W., Huttner, D. & Hickson, I. D. How unfinished business from S-phase affects mitosis and beyond. EMBO J.32, 2661–2671 (2013). PubMed PMC
Fang, H. et al. RecQL4-Aurora B kinase axis is essential for cellular proliferation, cell cycle progression, and mitotic integrity. Oncogenesis7, 68 (2018). PubMed PMC
Ying, S. et al. MUS81 promotes common fragile site expression. Nat. Cell Biol.15, 1001–1007 (2013). PubMed
Lu, R. & Pickett, H. A. Telomeric replication stress: the beginning and the end for alternative lengthening of telomeres cancers. Open Biol.12, 220011 (2022). PubMed PMC
Barefield, C. & Karlseder, J. The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res.40, 7358–7367 (2012). PubMed PMC
Sangrithi, M. N. et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell121, 887–898 (2005). PubMed
Abe, T. et al. The N-terminal region of RECQL4 lacking the helicase domain is both essential and sufficient for the viability of vertebrate cells. Role of the N-terminal region of RECQL4 in cells. Biochim. Biophys. Acta1813, 473–479 (2011). PubMed
Singh, D. K. et al. The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Res.40, 6632–6648 (2012). PubMed PMC
Thangavel, S. et al. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol. Cell Biol.30, 1382–1396 (2010). PubMed PMC
Matos, J. & West, S. C. Holliday junction resolution: regulation in space and time. DNA Rep. (Amst.)19, 176–181 (2014). PubMed PMC
Matos, J., Blanco, M. G., Maslen, S., Skehel, J. M. & West, S. C. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell147, 158–172 (2011). PubMed PMC
Chan, Y. W., Fugger, K. & West, S. C. Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat. Cell Biol.20, 92–103 (2018). PubMed PMC
Andrs, M., Hasanova, Z., Oravetzova, A., Dobrovolna, J. & Janscak, P. RECQ5: A mysterious helicase at the interface of DNA replication and transcription. Genes (Basel)11, 232 (2020). PubMed PMC
Ajeawung, N. F. et al. Mutations in ANAPC1, encoding a scaffold subunit of the anaphase-promoting complex, cause rothmund-thomson syndrome type 1. Am. J. Hum. Genet. 105, 625–630 (2019). PubMed PMC
Xu, X. et al. DNA replication initiation factor RECQ4 possesses a role in antagonizing DNA replication initiation. Nat. Commun.14, 1233 (2023). PubMed PMC
Choi, Y.-W. et al. Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis. Int J. Gynecol. Cancer17, 687–696 (2007). PubMed
Lu, R. et al. MUS81 participates in the progression of serous ovarian cancer associated with dysfunctional DNA repair system. Front Oncol.9, 1189 (2019). PubMed PMC
Thul, P. J. & Lindskog, C. The human protein atlas: a spatial map of the human proteome. Protein Sci.27, 233–244 (2018). PubMed PMC
Reinhold, W. C. et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res.72, 3499–3511 (2012). PubMed PMC
Ghodgaonkar, M. M. et al. Phenotypic characterization of missense polymerase-δ mutations using an inducible protein-replacement system. Nat. Commun.5, 4990 (2014). PubMed
Murnane, J. P. Inducible gene expression by DNA rearrangements in human cells. Mol. Cell Biol.6, 549–558 (1986). PubMed PMC
Addis Jones, O., Tiwari, A., Olukoga, T., Herbert, A. & Chan, K.-L. PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling. Nat. Commun.10, 2861 (2019). PubMed PMC
Sedlackova, H. et al. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature587, 297–302 (2020). PubMed
McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol.16, e2005970 (2018). PubMed PMC
Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc224, 213–232 (2006). PubMed
Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol.302, 205–217 (2000). PubMed
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res.42, W320–W324 (2014). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
Pettersen, E. F. et al. UCSF chimera-a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). PubMed
Macris, M. A., Krejci, L., Bussen, W., Shimamoto, A. & Sung, P. Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Rep. (Amst.)5, 172–180 (2006). PubMed
Garcia, P. L., Liu, Y., Jiricny, J., West, S. C. & Janscak, P. Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J.23, 2882–2891 (2004). PubMed PMC