Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Emmy-Noether-Programm
Deutsche Forschungsgemeinschaft
SFB 767
Deutsche Forschungsgemeinschaft
Core Program PN19-03 (contract number 21 N/08.02.2019)
Ministerul Educației și Cercetării Științifice
IT-756-13
Basque Departamento de Universidades e Investigación
FIS2013-48286-C2-8752-P
Consejo Superior de Investigaciones Científicas
FIS2016-75862-P
Consejo Superior de Investigaciones Científicas
European Structural and Investment Funds
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760
Czech Ministry of Education, Youth and Sports
LM2015087
Czech Ministry of Education, Youth and Sports
LM2015042
Czech Ministry of Education, Youth and Sports
Praemium Academie
Academy of Sciences of the Czech Republic
PubMed
31965698
PubMed Central
PMC7187382
DOI
10.1002/anie.201915200
Knihovny.cz E-zdroje
- Klíčová slova
- DFT, STM/AFM, covalent-bond formation, single-molecule conductance, strong anchoring,
- Publikační typ
- časopisecké články MeSH
Among the prerequisites for the progress of single-molecule-based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ-induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.
National Institute of Materials Physics Atomistilor Strasse No 405A 077125 Magurele Romania
Present address University of Cambridge Cavendish Laboratory J J Thomson Avenue Cambridge CB3 0HE UK
Present address University of Liverpool Department of Chemistry Crown Street Liverpool L69 7ZD UK
SUPA School of Physics and Astronomy University of St Andrews North Haugh St Andrews KY16 9SS UK
Zobrazit více v PubMed
“Unimolecular Electronic Devices”: Metzger R. M., Mattern D. L., Unimolecular and Supramolecular Electronics II (Eds.: R. M. Metzger, D. L. Mattern), Springer Berlin Heidelberg, Berlin, 2011, pp. 39–84.
Tao N. J., Nat. Nanotechnol. 2006, 1, 173–181. PubMed
“Molecular Electronic Junction Transport: Some Pathways and Some Ideas”: Solomon G. C., Herrmann C., Ratner M. A., Unimolecular and Supramolecular Electronics II (Eds.: R. M. Metzger, D. L. Mattern), Springer Berlin Heidelberg, Berlin, 2011, pp. 1–38. PubMed
Su T. A., Neupane M., Steigerwald M. L., Venkataraman L., Nuckolls C., Nat. Rev. Mater. 2016, 1, 16002.
Nitzan A., Ratner M. A., Science 2003, 300, 1384–1389. PubMed
Chen F., Li X., Hihath J., Huang Z., Tao N., J. Am. Chem. Soc. 2006, 128, 15874–15881. PubMed
Moth-Poulsen K., Bjørnholm T., Nat. Nanotechnol. 2009, 4, 551–556. PubMed
Kahn A., Koch N., Gao W. Y., J. Polym. Sci. Part A J. Polym. Sci. B 2003, 41, 2529–2548.
Ishii H., Sugiyama K., Ito E., Seki K., Adv. Mater. 1999, 11, 605–625.
Silveira W. R., Marohn J. A., Phys. Rev. Lett. 2004, 93, 116104. PubMed
Koch N., ChemPhysChem 2007, 8, 1438–1455. PubMed
Foti G., Vázquez H., Sánchez-Portal D., Arnau A., Frederiksen T., J. Phys. Chem. C 2014, 118, 27106–27112.
Reed M. A., Zhou C., Muller C. J., Burgin T. P., Tour J. M., Science 1997, 278, 252–254.
Xu B., Tao N. J., Science 2003, 301, 1221–1223. PubMed
Cui X. D., Primak A., Zarate X., Tomfohr J., Sankey O. F., Moore A. L., Moore T. A., Gust D., Harris G., Lindsay S. M., Science 2001, 294, 571–574. PubMed
Repp J., Meyer G., Stojković S. M., Gourdon A., Joachim C., Phys. Rev. Lett. 2005, 94, 026803. PubMed
Temirov R., Soubatch S., Neucheva O., Lassise A. C., Tautz F. S., New J. Phys. 2008, 10, 053012.
Brede J., Atodiresei N., Kuck S., Lazić P., Caciuc V., Morikawa Y., Hoffmann G., Blügel S., Wiesendanger R., Phys. Rev. Lett. 2010, 105, 047204. PubMed
Gross L., Moll N., Mohn F., Curioni A., Meyer G., Hanke F., Persson M., Phys. Rev. Lett. 2011, 107, 086101. PubMed
Joachim C., Gimzewski J. K., Schlittler R. R., Chavy C., Phys. Rev. Lett. 1995, 74, 2102. PubMed
Yazdani A., Eigler D. M., Lang N. D., Science 1996, 272, 1921. PubMed
Schull G., Frederiksen T., Brandbyge M., Berndt R., Phys. Rev. Lett. 2009, 103, 206803. PubMed
Zhang Y. H., Wahl P., Kern K., Nano Lett. 2011, 11, 3838–3843. PubMed
Schmaus S., Bagrets A., Nahas Y., Yamada T. K., Bork A., Bowen M., Beaurepaire E., Evers F., Wulfhekel W., Nat. Nanotechnol. 2011, 6, 185–189. PubMed
Vitali L., Ohmann R., Kern K., Garcia-Lekue A., Frederiksen T., Sanchez-Portal D., Arnau A., Nano Lett. 2010, 10, 657–660. PubMed
Borca B., Michnowicz T., Pétuya R., Pristl M., Schendel V., Pentegov I., Kraft U., Klauk H., Wahl P., Gultzer R., Arnau A., Schlickum U., Kern K., ACS Nano 2017, 11, 4703–4709. PubMed
Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Phys. Rev. B 2014, 90, 085421.
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110–1114. PubMed
Kraft U., Anthony J. E., Ripaud E., Loth M. A., Weber E., Klauk H., Chem. Mater. 2015, 27, 998–1004.
Kresse G., Hafner J., Phys. Rev. B 1994, 49, 14251–14269. PubMed
Kresse G., Furthmuller J., Phys. Rev. B 1996, 54, 11169–11186. PubMed
Blöchl P. E., Phys. Rev. B 1994, 50, 17953–17979. PubMed
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865; Erratum: PubMed
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1997, 78, 1396–1396. PubMed
Berland K., Hylgaard P., Phys. Rev. B. 2014, 89, 035412.
Björkman T., J. Chem. Phys. 2014, 141, 074708. PubMed
Koch N., Gerlach A., Duhm S., Glowatzki H., Heimel G., Vollmer A., Schreiber F., J. Am. Chem. Soc. 2008, 130, 7300–7304. PubMed
Momma K., Izumi F., J. Appl. Crystallogr. 2011, 44, 1272–1276.
Hapala P., Temirov R., Tautz F. S., Jelínek P., Phys. Rev. Lett. 2014, 113, 226101. PubMed
Peng J., Guo J., Hapala P., Cao D., Ma R., Cheng B., Xu L., Odráček M., Jelínek P., Wang E., Jiang Y., Nat. Commun. 2018, 9, 122. PubMed PMC