Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units

. 2020 Apr 06 ; 59 (15) : 6207-6212. [epub] 20200218

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31965698

Grantová podpora
Emmy-Noether-Programm Deutsche Forschungsgemeinschaft
SFB 767 Deutsche Forschungsgemeinschaft
Core Program PN19-03 (contract number 21 N/08.02.2019) Ministerul Educației și Cercetării Științifice
IT-756-13 Basque Departamento de Universidades e Investigación
FIS2013-48286-C2-8752-P Consejo Superior de Investigaciones Científicas
FIS2016-75862-P Consejo Superior de Investigaciones Científicas
European Structural and Investment Funds
SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760 Czech Ministry of Education, Youth and Sports
LM2015087 Czech Ministry of Education, Youth and Sports
LM2015042 Czech Ministry of Education, Youth and Sports
Praemium Academie Academy of Sciences of the Czech Republic

Among the prerequisites for the progress of single-molecule-based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ-induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.

Zobrazit více v PubMed

“Unimolecular Electronic Devices”: Metzger R. M., Mattern D. L., Unimolecular and Supramolecular Electronics II (Eds.: R. M. Metzger, D. L. Mattern), Springer Berlin Heidelberg, Berlin, 2011, pp. 39–84.

Tao N. J., Nat. Nanotechnol. 2006, 1, 173–181. PubMed

“Molecular Electronic Junction Transport: Some Pathways and Some Ideas”: Solomon G. C., Herrmann C., Ratner M. A., Unimolecular and Supramolecular Electronics II (Eds.: R. M. Metzger, D. L. Mattern), Springer Berlin Heidelberg, Berlin, 2011, pp. 1–38. PubMed

Su T. A., Neupane M., Steigerwald M. L., Venkataraman L., Nuckolls C., Nat. Rev. Mater. 2016, 1, 16002.

Nitzan A., Ratner M. A., Science 2003, 300, 1384–1389. PubMed

Chen F., Li X., Hihath J., Huang Z., Tao N., J. Am. Chem. Soc. 2006, 128, 15874–15881. PubMed

Moth-Poulsen K., Bjørnholm T., Nat. Nanotechnol. 2009, 4, 551–556. PubMed

Kahn A., Koch N., Gao W. Y., J. Polym. Sci. Part A J. Polym. Sci. B 2003, 41, 2529–2548.

Ishii H., Sugiyama K., Ito E., Seki K., Adv. Mater. 1999, 11, 605–625.

Silveira W. R., Marohn J. A., Phys. Rev. Lett. 2004, 93, 116104. PubMed

Koch N., ChemPhysChem 2007, 8, 1438–1455. PubMed

Foti G., Vázquez H., Sánchez-Portal D., Arnau A., Frederiksen T., J. Phys. Chem. C 2014, 118, 27106–27112.

Reed M. A., Zhou C., Muller C. J., Burgin T. P., Tour J. M., Science 1997, 278, 252–254.

Xu B., Tao N. J., Science 2003, 301, 1221–1223. PubMed

Cui X. D., Primak A., Zarate X., Tomfohr J., Sankey O. F., Moore A. L., Moore T. A., Gust D., Harris G., Lindsay S. M., Science 2001, 294, 571–574. PubMed

Repp J., Meyer G., Stojković S. M., Gourdon A., Joachim C., Phys. Rev. Lett. 2005, 94, 026803. PubMed

Temirov R., Soubatch S., Neucheva O., Lassise A. C., Tautz F. S., New J. Phys. 2008, 10, 053012.

Brede J., Atodiresei N., Kuck S., Lazić P., Caciuc V., Morikawa Y., Hoffmann G., Blügel S., Wiesendanger R., Phys. Rev. Lett. 2010, 105, 047204. PubMed

Gross L., Moll N., Mohn F., Curioni A., Meyer G., Hanke F., Persson M., Phys. Rev. Lett. 2011, 107, 086101. PubMed

Joachim C., Gimzewski J. K., Schlittler R. R., Chavy C., Phys. Rev. Lett. 1995, 74, 2102. PubMed

Yazdani A., Eigler D. M., Lang N. D., Science 1996, 272, 1921. PubMed

Schull G., Frederiksen T., Brandbyge M., Berndt R., Phys. Rev. Lett. 2009, 103, 206803. PubMed

Zhang Y. H., Wahl P., Kern K., Nano Lett. 2011, 11, 3838–3843. PubMed

Schmaus S., Bagrets A., Nahas Y., Yamada T. K., Bork A., Bowen M., Beaurepaire E., Evers F., Wulfhekel W., Nat. Nanotechnol. 2011, 6, 185–189. PubMed

Vitali L., Ohmann R., Kern K., Garcia-Lekue A., Frederiksen T., Sanchez-Portal D., Arnau A., Nano Lett. 2010, 10, 657–660. PubMed

Borca B., Michnowicz T., Pétuya R., Pristl M., Schendel V., Pentegov I., Kraft U., Klauk H., Wahl P., Gultzer R., Arnau A., Schlickum U., Kern K., ACS Nano 2017, 11, 4703–4709. PubMed

Hapala P., Kichin G., Wagner C., Tautz F. S., Temirov R., Jelínek P., Phys. Rev. B 2014, 90, 085421.

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110–1114. PubMed

Kraft U., Anthony J. E., Ripaud E., Loth M. A., Weber E., Klauk H., Chem. Mater. 2015, 27, 998–1004.

Kresse G., Hafner J., Phys. Rev. B 1994, 49, 14251–14269. PubMed

Kresse G., Furthmuller J., Phys. Rev. B 1996, 54, 11169–11186. PubMed

Blöchl P. E., Phys. Rev. B 1994, 50, 17953–17979. PubMed

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865; Erratum: PubMed

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1997, 78, 1396–1396. PubMed

Berland K., Hylgaard P., Phys. Rev. B. 2014, 89, 035412.

Björkman T., J. Chem. Phys. 2014, 141, 074708. PubMed

Koch N., Gerlach A., Duhm S., Glowatzki H., Heimel G., Vollmer A., Schreiber F., J. Am. Chem. Soc. 2008, 130, 7300–7304. PubMed

Momma K., Izumi F., J. Appl. Crystallogr. 2011, 44, 1272–1276.

Hapala P., Temirov R., Tautz F. S., Jelínek P., Phys. Rev. Lett. 2014, 113, 226101. PubMed

Peng J., Guo J., Hapala P., Cao D., Ma R., Cheng B., Xu L., Odráček M., Jelínek P., Wang E., Jiang Y., Nat. Commun. 2018, 9, 122. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular sensitised probe for amino acid recognition within peptide sequences

. 2023 Dec 14 ; 14 (1) : 8335. [epub] 20231214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...