Molecular sensitised probe for amino acid recognition within peptide sequences
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38097575
PubMed Central
PMC10721870
DOI
10.1038/s41467-023-43844-5
PII: 10.1038/s41467-023-43844-5
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny * MeSH
- molekulární sondy * MeSH
- peptidy chemie MeSH
- rastrovací tunelová mikroskopie MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny * MeSH
- molekulární sondy * MeSH
- peptidy MeSH
The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.
Department of Chemistry University of Oxford Oxford UK
Institut de Physique École Polytechnique Fédérale de Lausanne Lausanne Switzerland
Institute of Physics of the Czech Academy of Science Prague Czech Republic
Max Planck Institute for Solid State Research Stuttgart Germany
National Institute of Materials Physics 077125 Magurele Romania
School of Integrated Circuits and Electronics Beijing Institute of Technology Beijing 100081 China
Zobrazit více v PubMed
Bian K, Gerber C, Heinrich A. Scanning probe microscopy. Nat. Rev. Methods Prim. 2021;1:36. doi: 10.1038/s43586-021-00033-2. DOI
Rauschenbach S, Ternes M, Harnau L, Kern Klaus R. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem. 2016;9:473–498. doi: 10.1146/annurev-anchem-071015-041633. PubMed DOI
Kondratuk DV, et al. Supramolecular nesting of cyclic polymers. Nat. Chem. 2015;7:317–322. doi: 10.1038/nchem.2182. PubMed DOI
Walz A, Stoiber K, Huettig A, Schlichting H, Barth JV. Navigate flying molecular elephants safely to the ground: mass-selective soft landing up to the Mega-Dalton range by Electrospray Controlled Ion-Beam Deposition. Anal. Chem. 2022;94:7767–7778. doi: 10.1021/acs.analchem.1c04495. PubMed DOI PMC
Paschke F, et al. Imaging the single-electron Ln-Ln bonding orbital in a dimetallofullerene molecular magnet. Small. 2021;18:2105667. doi: 10.1002/smll.202105667. PubMed DOI
Fardian‐Melamed N, Eidelshtein G, Rotem D, Kotlyar A, Porath D. Scanning tunneling microscopy and spectroscopy of novel silver–containing DNA molecules. Adv. Mater. 2019;31:1902816. doi: 10.1002/adma.201902816. PubMed DOI
Tanaka H, Kawai T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nat. Nanotechnol. 2009;4:518–522. doi: 10.1038/nnano.2009.155. PubMed DOI
Pawlak R, et al. Conformations and cryo-force spectroscopy of spray-deposited single-strand DNA on gold. Nat. Commun. 2019;10:1–7. doi: 10.1038/s41467-019-08531-4. PubMed DOI PMC
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71. doi: 10.1126/science.2675315. PubMed DOI
Konermann L, Douglas DJ. Unfolding of proteins monitored by electrospray ionization mass spectrometry: a comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 1998;9:1248–1254. doi: 10.1016/S1044-0305(98)00103-2. PubMed DOI
Kahle S, et al. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett. 2012;12:518–521. doi: 10.1021/nl204141z. PubMed DOI
Rinke G, et al. Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum. Int. J. Mass. Spectrom. 2015;377:228–234. doi: 10.1016/j.ijms.2014.06.026. DOI
Kley CS, et al. Atomic-scale observation of multi-conformational binding and energy level alignment of ruthenium-based photosensitizers on TiO2 anatase. Nano Lett. 2014;14:563–569. doi: 10.1021/nl403717d. PubMed DOI
Deng Z, et al. A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome C at surfaces. Nano Lett. 2012;12:2452–2458. doi: 10.1021/nl3005385. PubMed DOI
Rinke G, et al. Active conformation control of unfolded proteins by hyperthermal collision with a metal surface. Nano Lett. 2014;14:5609–5615. doi: 10.1021/nl502122j. PubMed DOI
Abb S, Harnau L, Gutzler R, Rauschenbach S, Kern K. Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nat. Commun. 2016;7:10335. doi: 10.1038/ncomms10335. PubMed DOI PMC
Rauschenbach S, et al. Two-dimensional folding of polypeptides into molecular nanostructures at surfaces. ACS Nano. 2017;11:2420–2427. doi: 10.1021/acsnano.6b06145. PubMed DOI
Abb S, et al. Carbohydrate self-assembly at surfaces: STM imaging of sucrose conformation and ordering on Cu (100) Angew. Chem. Int. Ed. 2019;131:8424–8428. doi: 10.1002/ange.201901340. PubMed DOI PMC
Wu X, et al. Imaging single glycans. Nature. 2020;582:375–378. doi: 10.1038/s41586-020-2362-1. PubMed DOI
Anggara K, et al. Exploring the molecular conformation space by soft molecule–surface collision. J. Am. Chem. Soc. 2020;142:21420–21427. doi: 10.1021/jacs.0c09933. PubMed DOI PMC
Anggara K, et al. Identifying the origin of local flexibility in a carbohydrate polymer. Proc. Natl Acad. Sci. USA. 2021;118:2102168118. doi: 10.1073/pnas.2102168118. PubMed DOI PMC
Restrepo-Pérez L, Joo C, Dekker C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018;13:786–796. doi: 10.1038/s41565-018-0236-6. PubMed DOI
MacCoss MJ, et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods. 2023;20:339–346. doi: 10.1038/s41592-023-01802-5. PubMed DOI PMC
Reed BD, et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science. 2022;378:186–192. doi: 10.1126/science.abo7651. PubMed DOI
Marx V. Proteomics sets up single-cell and single-molecule solutions. Nat. Methods. 2023;20:350–354. doi: 10.1038/s41592-023-01781-7. PubMed DOI
Timp W, Timp G. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 2020;6:eaax8978. doi: 10.1126/sciadv.aax8978. PubMed DOI PMC
Callahan N, Tullman J, Kelman Z, Marino J. Strategies for development of a next generation protein sequencing platform. Trends Biochem. Sci. 2020;45:76–89. doi: 10.1016/j.tibs.2019.09.005. PubMed DOI PMC
Swaminathan J, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 2018;36:1076–1082. doi: 10.1038/nbt.4278. PubMed DOI PMC
van Ginkel J, et al. Single-molecule peptide fingerprinting. Proc. Natl Acad. Sci. USA. 2018;115:3338–3343. doi: 10.1073/pnas.1707207115. PubMed DOI PMC
Grabarics M, et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 2022;122:7840–7908. doi: 10.1021/acs.chemrev.1c00380. PubMed DOI PMC
Repp J, Meyer G, Stojković SM, Gourdon A, Joachim C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005;94:026803. doi: 10.1103/PhysRevLett.94.026803. PubMed DOI
Gross L, et al. High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 2011;107:086101. doi: 10.1103/PhysRevLett.107.086101. PubMed DOI
Liljeroth P, Repp J, Meyer G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science. 2007;317:1203–1206. doi: 10.1126/science.1144366. PubMed DOI
Schendel V, et al. Remotely controlled isomer selective molecular switching. Nano Lett. 2016;16:93–97. doi: 10.1021/acs.nanolett.5b02974. PubMed DOI
Stipe BC, Rezaei MA, Ho W. Single-molecule vibrational spectroscopy and microscopy. Science. 1998;280:1732–1735. doi: 10.1126/science.280.5370.1732. PubMed DOI
Abb S, et al. Polymorphism in carbohydrate self-assembly at surfaces: STM imaging and theoretical modelling of trehalose on Cu (100) RSC Adv. 2019;9:35813–35819. doi: 10.1039/C9RA06764G. PubMed DOI PMC
Schön JC, Oligschleger C, Cortes J. Prediction and clarification of structures of (bio)molecules on surfaces. Z. für Naturforsch. B. 2016;71:351–374. doi: 10.1515/znb-2015-0222. DOI
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by Atomic Force Microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Jelínek P. High resolution SPM imaging of organic molecules with functionalised tips. J. Phys.: Condens. Matter. 2017;29:343002. PubMed
Cai J, et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014;9:896–900. doi: 10.1038/nnano.2014.184. PubMed DOI
Hieulle J, et al. On-surface route for producing planar nanographenes with azulene moieties. Nano Lett. 2018;18:418–423. doi: 10.1021/acs.nanolett.7b04309. PubMed DOI
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalised tips. Phys. Rev. B. 2014;90:85421. doi: 10.1103/PhysRevB.90.085421. DOI
Temirov R, Soubatch S, Neucheva O, Lassise AC, Tautz FS. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. N. J. Phys. 2008;10:53012. doi: 10.1088/1367-2630/10/5/053012. DOI
Mallada B, et al. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science. 2021;374:863–867. doi: 10.1126/science.abk1479. PubMed DOI
Ohshiro T, et al. Detection of post-translational modifications in single peptides using electron tunneling currents. Nat. Nanotechnol. 2014;9:835–840. doi: 10.1038/nnano.2014.193. PubMed DOI
Zhao Y, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunneling. Nat. Nanotechnol. 2014;9:466–473. doi: 10.1038/nnano.2014.54. PubMed DOI PMC
Ouldali H, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020;38:176–181. doi: 10.1038/s41587-019-0345-2. PubMed DOI PMC
Kennedy E, et al. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 2016;11:968–976. doi: 10.1038/nnano.2016.120. PubMed DOI
Borca B, et al. Bipolar conductance switching of single anthradithiophene molecules. ACS Nano. 2015;9:12506–12512. doi: 10.1021/acsnano.5b06000. PubMed DOI
Michnowicz T, et al. Controlling single molecule conductance by a locally induced chemical reaction on individual thiophene units. Angew. Chem. Int. Ed. 2020;132:6266–6271. doi: 10.1002/ange.201915200. PubMed DOI PMC
Weiss IM, Muth C, Drumm R, Kirchner HOK. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;11:2. doi: 10.1186/s13628-018-0042-4. PubMed DOI PMC
Mendieta-Moreno JI, et al. Fireball/amber: an efficient local-orbital DFT QM/MM method for biomolecular systems. J. Chem. Theory Comput. 2014;10:2185–2193. doi: 10.1021/ct500033w. PubMed DOI
Lewis JP, et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi Basic Res. 2011;248:1989–2007. doi: 10.1002/pssb.201147259. DOI
Chiang CL, Xu C, Han Z, Ho W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science. 2014;344:885–888. doi: 10.1126/science.1253405. PubMed DOI
Friedrich N, et al. Magnetism of topological boundary states induced by boron substitution in graphene nanoribbons. Phys. Rev. Lett. 2020;125:146801. doi: 10.1103/PhysRevLett.125.146801. PubMed DOI
Steen H, Mann M. The abc’s (and xyz’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 2004;5:699–711. doi: 10.1038/nrm1468. PubMed DOI
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature. 2016;537:328–338. doi: 10.1038/nature19947. PubMed DOI PMC
Hinaut A, et al. Electrospray deposition of structurally complex molecules revealed by atomic force microscopy. Nanoscale. 2018;10:1337–1344. doi: 10.1039/C7NR06261C. PubMed DOI
Jethwa SJ, et al. Revealing the structural detail of individual polymers using a combination of electrospray deposition and UHV-STM. Chem. Commun. 2017;53:1168–1171. doi: 10.1039/C6CC09167A. PubMed DOI
Judd CJ, et al. Molecular quantum rings formed from a π-conjugated macrocycle. Phys. Rev. Lett. 2020;125:206803. doi: 10.1103/PhysRevLett.125.206803. PubMed DOI
Ponder Jr JF, et al. Low-defect, high molecular weight indacenodithiophene (IDT) polymers via a C–H activation: Evaluation of a simpler and greener approach to organic electronic materials. ACS Mater. Lett. 2021;3:1503–1512. doi: 10.1021/acsmaterialslett.1c00478. DOI
Yao Y, Docter M, van Ginkel J, de Ridder D, Joo C. Single-molecule protein sequencing through fingerprinting: computational assessment. Phys. Biol. 2015;12:055003. doi: 10.1088/1478-3975/12/5/055003. PubMed DOI
Swaminathan J, Boulgakov AA, Marcotte EM. A Teoretical justifcation for single molecule peptide sequencing. PLOS Comput. Biol. 2015;11:e1004080. doi: 10.1371/journal.pcbi.1004080. PubMed DOI PMC
Horcas I, et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:013705. doi: 10.1063/1.2432410. PubMed DOI
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Basanta MA, Dappe YJ, Jelínek P, Ortega J. Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comput. Mater. Sci. 2007;39:759–766. doi: 10.1016/j.commatsci.2006.09.003. DOI
Heinz H, Lin TJ, Kishore Mishra R, Emami FS. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir. 2013;29:1754–1765. doi: 10.1021/la3038846. PubMed DOI
Tian, C, et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI