Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32839507
PubMed Central
PMC7445177
DOI
10.1038/s41598-020-71077-9
PII: 10.1038/s41598-020-71077-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Terminating the tip of an atomic force microscope with a CO molecule allows data to be acquired with a well-known and inert apex. Previous studies have shown conflicting results regarding the electrostatic interaction, indicating in some cases that the negative charge at the apex of the CO dominates, whereas in other cases the positive charge at the end of the metal tip dominates. To clarify this, we investigated [Formula: see text](111). [Formula: see text] is an ionic crystal and the (111) surface does not possess charge inversion symmetry. Far from the surface, the interaction is dominated by electrostatics via the negative charge at the apex. Closer to the surface, Pauli repulsion and CO bending dominate, which leads to an unexpected appearance of the complex 3-atom unit cell. We compare simulated data in which the electrostatics are modeled by point particles versus a charge density calculated by DFT. We also compare modeling Pauli repulsion via individual Lennard-Jones potentials versus a total charge density overlap. In doing so, we determine forcefield parameters useful for future investigations of biochemical processes.
Department of Applied Physics Aalto University Aalto Finland
Institute of Experimental and Applied Physics University of Regensburg 93040 Regensburg Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Prague 6 Czech Republic
Zobrazit více v PubMed
Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys. Rev. Lett. 1986;56:930–933. PubMed
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. PubMed
Sun Z, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P. Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys. Rev. Lett. 2011;106:046104. PubMed
de Oteyza DG, et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science. 2013;340:1434–1437. PubMed
Hämäläinen SK, et al. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 2014;113:186102. PubMed
Jelínek P. High resolution SPM imaging of organic molecules with functionalized tips. J. Phys.: Condens. Matter. 2017;29:343002. PubMed
Pavliček N, Gross L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 2017;1:0005.
Peng J, et al. The effect of hydration number on the interfacial transport of sodium ions. Nature. 2018;557:701–705. PubMed
Peng J, et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 2018;9:122. PubMed PMC
Boneschanscher MP, et al. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano. 2012;6:10216–10221. PubMed
Emmrich M, et al. Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science. 2015;348:308–311. PubMed
Ellner M, et al. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 2016;16:1974–1980. PubMed
Schulz F, et al. Elemental identification by combining atomic force microscopy and Kelvin probe force microscopy. ACS Nano. 2018;12:5274–5283. PubMed PMC
Berwanger J, Huber F, Stilp F, Giessibl FJ. Lateral manipulation with combined atomic force and scanning tunneling microscopy using CO-terminated tips. Phys. Rev. B. 2018;98:195409.
Berwanger J, Polesya S, Mankovsky S, Ebert H, Giessibl FJ. Atomically resolved chemical reactivity of small Fe clusters. Phys. Rev. Lett. 2020;124:096001. PubMed
Moll N, Gross L, Mohn F, Curioni A, Meyer G. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys. 2010;12:125020.
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. PubMed
Ellner M, Pou P, Pérez R. Molecular identification, bond order discrimination, and apparent intermolecular features in atomic force microscopy studied with a charge density based method. ACS Nano. 2019;13:786–795. PubMed
Huber F, et al. Chemical bond formation showing a transition from physisorption to chemisorption. Science. 2019;366:235–238. PubMed
Neu M, et al. Image correction for atomic force microscopy images with functionalized tips. Phys. Rev. B. 2014;89:205407.
Weymouth AJ, Hofmann T, Giessibl FJ. Quantifying molecular stiffness and interaction with lateral force microscopy. Science. 2014;343:1120–1122. PubMed
Boneschanscher MP, Hämäläinen SK, Liljeroth P, Swart I. Sample corrugation affects the apparent bond lengths in atomic force microscopy. ACS Nano. 2014;8:3006–3014. PubMed
Guo CS, Van Hove MA, Ren X, Zhao Y. High-resolution model for noncontact atomic force microscopy with a flexible molecule on the tip apex. J. Phys. Chem. C. 2015;119:1483–1488.
van der Lit J, Di Cicco F, Hapala P, Jelinek P, Swart I. Submolecular resolution imaging of molecules by atomic force microscopy: the influence of the electrostatic force. Phys. Rev. Lett. 2016;116:096102. PubMed
Bammerlin M, et al. Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl. Phys. A. 1998;66:S293–S294.
Reichling M, Barth C. Scanning force imaging of atomic size defects on the CaF
Schneiderbauer M, Emmrich M, Weymouth AJ, Giessibl FJ. CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces. Phys. Rev. Lett. 2014;112:166102. PubMed
Ruschmeier K, Schirmeisen A, Hoffmann R. Atomic-scale force-vector fields. Phys. Rev. Lett. 2008;101:156102. PubMed
Hoffmann R, Weiner D, Schirmeisen A, Foster AS. Sublattice identification in noncontact atomic force microscopy of the NaCl(001) surface. Phys. Rev. B. 2009;80:115426.
Lämmle K, et al. Unambiguous determination of the adsorption geometry of a metal-organic complex on a bulk insulator. Nano Lett. 2010;10:2965–2971. PubMed
Teobaldi G, et al. Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips. Phys. Rev. Lett. 2011;106:216102. PubMed
Tasker PW. The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys. 1979;12:4977–4984.
Giessibl FJ, Reichling M. Investigating atomic details of the CaF
Barth C, Foster AS, Reichling M, Shluger AL. Contrast formation in atomic resolution scanning force microscopy on CaF
Foster AS, Barth C, Shluger AL, Reichling M. Unambiguous interpretation of atomically resolved force microscopy Images of an Insulator. Phys. Rev. Lett. 2001;86:2373–2376. PubMed
Foster AS, Barth C, Shluger AL, Nieminen RM, Reichling M. Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF
Hoffmann R, et al. Measuring site-specific cluster-surface bond formation. J. Am. Chem. Soc. 2005;127:17863–17866. PubMed
Arai T, Gritschneder S, Tröger L, Reichling M. Atomic resolution force microscopy imaging on a strongly ionic surface with differently functionalized tips. J. Vac. Sci. Technol., B. 2010;28:1279–1283.
Liebig A, Peronio A, Meuer D, Weymouth AJ, Giessibl FJ. High-precision atomic force microscopy with atomically-characterized tips. New J. Phys. 2020;22:063040.
Welker J, Giessibl FJ. Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science. 2012;336:444–449. PubMed
Welker J, Weymouth AJ, Giessibl FJ. The influence of chemical bonding configuration on atomic identification by force spectroscopy. ACS Nano. 2013;7:7377–7382. PubMed
Liebig A, Giessibl FJ. In-situ characterization of O-terminated Cu tips for high-resolution atomic force microscopy. Appl. Phys. Lett. 2019;114:143103.
Gross L, et al. Bond-order discrimination by atomic force microscopy. Science. 2012;337:1326–1329. PubMed
Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.
Hoffmann R, Kantorovich LN, Baratoff A, Hug HJ, Güntherodt H-J. Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys. Rev. Lett. 2004;92:146103. PubMed
Giessibl FJ. Theory for an electrostatic imaging mechanism allowing atomic resolution of ionic crystals by atomic force microscopy. Phys. Rev. B. 1992;45:13815–13818. PubMed
Gross L, et al. Investigating atomic contrast in atomic force microscopy and kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B. 2014;90:155455.
Smoluchowski R. Anisotropy of the electronic work function of metals. Phys. Rev. 1941;60:661–674.
Gao DZ, et al. Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. ACS Nano. 2014;8:5339–5351. PubMed
Case DA, et al. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. PubMed PMC
Klein LJ, Williams CC. Single electron tunneling detected by electrostatic force. Appl. Phys. Lett. 2001;79:1828–1830.
Woodside MT, McEuen PL. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science. 2002;296:1098–1101. PubMed
Stomp R, et al. Detection of single-electron charging in an individual inas quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 2005;94:056802. PubMed
Bussmann E, Williams CC. Single-electron tunneling force spectroscopy of an individual electronic state in a nonconducting surface. Appl. Phys. Lett. 2006;88:263108. PubMed
Gross L, et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science. 2009;324:1428–1431. PubMed
Steurer W, et al. Manipulation of the charge state of single au atoms on insulating multilayer films. Phys. Rev. Lett. 2015;114:036801. PubMed
Rahe P, Steele RP, Williams CC. Consecutive charging of a molecule-on-insulator ensemble using single electron tunnelling methods. Nano Lett. 2016;16:911–916. PubMed
Steurer W, Fatayer S, Gross L, Meyer G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 2015;6:8353. PubMed PMC
Fatayer S, et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 2018;13:376–380. PubMed
Patera LL, Queck F, Scheuerer P, Repp J. Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature. 2019;566:245–248. PubMed
Patera LL, Queck F, Scheuerer P, Moll N, Repp J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett. 2019;123:016001. PubMed
Fatayer S, et al. Molecular structure elucidation with charge-state control. Science. 2019;365:142–145. PubMed
Rahe P, Smith EF, Wollschläger J, Moriarty PJ. Formation routes and structural details of the CaF
Laflör L, et al. Quadruped molecular anchoring to an insulator: functionalized ferrocene on CaF
Schütte J, Bechstein R, Rohlfing M, Reichling M, Kühnle A. Cooperative mechanism for anchoring highly polar molecules at an ionic surface. Phys. Rev. B. 2009;80:205421.
Illarionov YY, et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2019;2:230–235.
Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019;90:011101. PubMed
Albrecht TR, Grütter P, Horne D, Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991;69:668–673.
Hofmann T, Pielmeier F, Giessibl FJ. Chemical and crystallographic characterization of the tip apex in scanning probe microscopy. Phys. Rev. Lett. 2014;112:066101. PubMed
Bartels L, Meyer G, Rieder K-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 1997;71:213–215.
Hapala P, Temirov R, Tautz FS, Jelínek P. Origin of high-resolution iets-stm images of organic molecules with functionalized tips. Phys. Rev. Lett. 2014;113:226101. PubMed
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. PubMed
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775.
Giessibl FJ. A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 2001;78:123–125.
Shi H, Eglitis RI, Borstel G. Ab initio calculations of the CaF