The Mechanisms and Management of Age-Related Oxidative Stress in Male Hypogonadism Associated with Non-communicable Chronic Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34829704
PubMed Central
PMC8615233
DOI
10.3390/antiox10111834
PII: antiox10111834
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, noncommunicable chronic disease, nutrition, phytonutrients, testosterone, testosterone replacement therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Androgens have diverse functions in muscle physiology, lean body mass, the regulation of adipose tissue, bone density, neurocognitive regulation, and spermatogenesis, the male reproductive and sexual function. Male hypogonadism, characterized by reduced testosterone, is commonly seen in ageing males, and has a complex relationship as a risk factor and a comorbidity in age-related noncommunicable chronic diseases (NCDs), such as obesity, metabolic syndrome, type 2 diabetes, and malignancy. Oxidative stress, as a significant contributor to the ageing process, is a common feature between ageing and NCDs, and the related comorbidities, including hypertension, dyslipidemia, hyperglycemia, hyperinsulinemia, and chronic inflammation. Oxidative stress may also be a mediator of hypogonadism in males. Consequently, the management of oxidative stress may represent a novel therapeutic approach in this context. Therefore, this narrative review aims to discuss the mechanisms of age-related oxidative stress in male hypogonadism associated with NCDs and discusses current and potential approaches for the clinical management of these patients, which may include conventional hormone replacement therapy, nutrition and lifestyle changes, adherence to the optimal body mass index, and dietary antioxidant supplementation and/or phytomedicines.
Department of Life Science and Bioinformatics Assam University Silchar 788011 India
Zobrazit více v PubMed
Pillerová M., Borbélyová V., Hodosy J., Riljak V., Renczés E., Frick K.M., Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front. Neuroendocrinol. 2021;62:100926. doi: 10.1016/j.yfrne.2021.100926. PubMed DOI PMC
Traish A.M. Negative impact of testosterone deficiency and 5α-reductase inhibitors therapy on metabolic and sexual function in men. Adv. Exp. Med. Biol. 2017;1043:473–526. doi: 10.1007/978-3-319-70178-3_22. PubMed DOI
Dandona P., Rosenberg M.T. A practical guide to male hypogonadism in the primary care setting. Int. J. Clin. Pract. 2010;64:682–696. doi: 10.1111/j.1742-1241.2010.02355.x. PubMed DOI PMC
Araujo A.B., Wittert G.A. Endocrinology of the aging male. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:303–319. doi: 10.1016/j.beem.2010.11.004. PubMed DOI PMC
Morrell C.N. Reactive oxygen species: Finding the right balance. Circ. Res. 2008;103:571–572. doi: 10.1161/CIRCRESAHA.108.184325. PubMed DOI PMC
Smetana K., Lacina L., Szabo P., Dvoánková B., Broẑ P., Ŝedo A. Ageing as an important risk factor for cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI
Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020;57:100982. doi: 10.1016/j.arr.2019.100982. PubMed DOI
Höhn A., Weber D., Jung T., Ott C., Hugo M., Kochlik B., Kehm R., König J., Grune T., Castro J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. doi: 10.1016/j.redox.2016.12.001. PubMed DOI PMC
Dohle G.R., Smit M., Weber R.F.A. Androgens and male fertility. World J. Urol. 2003;21:341–345. doi: 10.1007/s00345-003-0365-9. PubMed DOI
Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC
Payne A.H., Youngblood G.L., Sha L., Burgos-Trinidad M., Hammond S.H. Hormonal regulation of steroidogenic enzyme gene expression in Leydig cells. J. Steroid Biochem. Mol. Biol. 1992;43:895–906. doi: 10.1016/0960-0760(92)90317-C. PubMed DOI
Czub M.P., Venkataramany B.S., Majorek K.A., Handing K.B., Porebski P.J., Beeram S.R., Suh K., Woolfork A.G., Hage D.S., Shabalin I.G., et al. Testosterone meets albumin-the molecular mechanism of sex hormone transport by serum albumins. Chem. Sci. 2019;10:1607–1618. doi: 10.1039/C8SC04397C. PubMed DOI PMC
Pivonello R., Menafra D., Riccio E., Garifalos F., Mazzella M., De Angelis C., Colao A.A. Metabolic disorders and male hypogonadotropic hypogonadism. Front. Endocrinol. 2019;10:345. doi: 10.3389/fendo.2019.00345. PubMed DOI PMC
Roychoudhury S., Chakraborty S., Choudhury A.P., Das A., Jha N.K., Slama P., Nath M., Massanyi P., Ruokolainen J., Kesari K.K. Environmental factors-induced oxidative stress: Hormonal and molecular pathway disruptions in hypogonadism and erectile dysfunction. Antioxidants. 2021;10:837. doi: 10.3390/antiox10060837. PubMed DOI PMC
Darby E., Anawalt B.D. Male hypogonadism: An update on diagnosis and treatment. Treat. Endocrinol. 2005;4:293–309. doi: 10.2165/00024677-200504050-00003. PubMed DOI
Baskaran S., Finelli R., Agarwal A. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia. 2020;53:e13577. doi: 10.1111/and.13577. PubMed DOI
Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014;2014:761264. doi: 10.1155/2014/761264. PubMed DOI PMC
Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Martindale J.L., Holbrook N.J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 2002;192:1–15. doi: 10.1002/jcp.10119. PubMed DOI
Ray P., Huang B., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC
Beatty S., Koh H.H., Phil M., Henson D., Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000;45:115–134. doi: 10.1016/S0039-6257(00)00140-5. PubMed DOI
Maritim A.C., Sanders R.A., Watkins J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003;17:24–38. doi: 10.1002/jbt.10058. PubMed DOI
Kattoor A.J., Pothineni N.V.K., Palagiri D., Mehta J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017;19:42. doi: 10.1007/s11883-017-0678-6. PubMed DOI
Uttara B., Singh A., Zamboni P., Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009;7:65–74. doi: 10.2174/157015909787602823. PubMed DOI PMC
Agarwal A., Parekh N., Panner Selvam M.K., Henkel R., Shah R., Homa S.T., Ramasamy R., Ko E., Tremellen K., Esteves S., et al. Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J. Men’s Health. 2019;37:296. doi: 10.5534/wjmh.190055. PubMed DOI PMC
Hanukoglu I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 2006;38:171–196. doi: 10.1080/03602530600570040. PubMed DOI
Ziegler G.A., Vonrhein C., Hanukoglu I., Schulz G.E. The structure of adrenodoxin reductase of mitochondrial P450 systems: Electron transfer for steroid biosynthesis. J. Mol. Biol. 1999;289:981–990. doi: 10.1006/jmbi.1999.2807. PubMed DOI
Quinn P.G., Payne A.H. Steroid product-induced, oxygen-mediated damage of microsomal cytochrome P-450 enzymes in Leydig cell cultures. Relationship to desensitization. J. Biol. Chem. 1985;260:2092–2099. doi: 10.1016/S0021-9258(18)89521-7. PubMed DOI
Tai P., Ascoli M. Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of RAS and the phosphorylation of ERK1/2 in leydig cells. Mol. Endocrinol. 2011;25:885–893. doi: 10.1210/me.2010-0489. PubMed DOI PMC
Tai P., Shiraishi K., Ascoli M. Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology. 2009;150:3766–3773. doi: 10.1210/en.2009-0207. PubMed DOI PMC
Martinelle N., Holst M., Söder O., Svechnikov K. Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat leydig cells by human chorionic gonadotropin. Endocrinology. 2004;145:4629–4634. doi: 10.1210/en.2004-0496. PubMed DOI
Lee S.Y., Gong E.Y., Hong C.Y., Kim K.H., Han J.S., Ryu J.C., Chae H.Z., Yun C.H., Lee K. ROS inhibit the expression of testicular steroidogenic enzyme genes via the suppression of Nur77 transactivation. Free Radic. Biol. Med. 2009;47:1591–1600. doi: 10.1016/j.freeradbiomed.2009.09.004. PubMed DOI
Lin H.L., Myshkin E., Waskell L., Hollenberg P.F. Peroxynitrite inactivation of human cytochrome P450s 2B6 and 2E1: Heme modification and site-specific nitrotyrosine formation. Chem. Res. Toxicol. 2007;20:1612–1622. doi: 10.1021/tx700220e. PubMed DOI
Karuzina I.I., Archakov A.I. The oxidative inactivation of cytochrome P450 in monooxygenase reactions. Free Radic. Biol. Med. 1994;16:73–97. doi: 10.1016/0891-5849(94)90245-3. PubMed DOI
Chen H., Zhou L., Lin C., Beattie M., Liu J., Zirkin B. Effect of glutathione redox state on Leydig cell susceptibility to acute oxidative stress. Mol. Cell. Endocrinol. 2010;323:147–154. doi: 10.1016/j.mce.2010.02.034. PubMed DOI PMC
Abidi P., Zhang H., Zaidi S.M., Shen W.J., Leers-Sucheta S., Cortez Y., Han J., Azhar S. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. J. Endocrinol. 2008;198:193–207. doi: 10.1677/JOE-07-0570. PubMed DOI
Zaidi S.K., Shen W.J., Bittner S., Bittner A., McLean M.P., Han J., Davis R.J., Kraemer F.B., Azhar S. p38 MAPK regulates steroidogenesis through transcriptional repression of StAR gene. J. Mol. Endocrinol. 2014;53:1–16. doi: 10.1530/JME-13-0287. PubMed DOI PMC
Wang X., Dyson M.T., Jo Y., Stocco D.M. Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology. 2003;144:3368–3375. doi: 10.1210/en.2002-0081. PubMed DOI
Wang X.J., Shen C.L., Dyson M.T., Eimerl S., Orly J., Hutson J.C., Stocco D.M. Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology. 2005;146:4202–4208. doi: 10.1210/en.2005-0298. PubMed DOI
Diemer T., Allen J.A., Hales H.K., Hales D.B. Reactive oxygen disrupts mitochondria in MA-10 tumor leydig cells and inhibits steroidogenic acute regulatory (STAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–2891. doi: 10.1210/en.2002-0090. PubMed DOI
Chen H., Jin S., Guo J., Kombairaju P., Biswal S., Zirkin B.R. Knockout of the transcription factor Nrf2: Effects on testosterone production by aging mouse Leydig cells. Mol. Cell. Endocrinol. 2015;409:113–120. doi: 10.1016/j.mce.2015.03.013. PubMed DOI PMC
Chen H., Pechenino A.S., Liu J., Beattie M.C., Brown T.R., Zirkin B.R. Effect of glutathione depletion on Leydig cell steroidogenesis in young and old Brown Norway rats. Endocrinology. 2008;149:2612–2619. doi: 10.1210/en.2007-1245. PubMed DOI PMC
Fernandez-Marcos P.J., Nóbrega-Pereira S. NADPH: New oxygen for the ROS theory of aging. Oncotarget. 2016;7:50814–50815. doi: 10.18632/oncotarget.10744. PubMed DOI PMC
Linford N.J., Schriner S.E., Rabinovitch P.S. Oxidative damage and aging: Spotlight on mitochondria. Cancer Res. 2006;66:2497–2499. doi: 10.1158/0008-5472.CAN-05-3163. PubMed DOI
Sharifi-Rad M., Anil Kumar N.V., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Tsouh Fokou P.V., Azzini E., Peluso I., et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694. PubMed DOI PMC
Rupérez A.I., Gil A., Aguilera C.M. Genetics of oxidative stress in obesity. Int. J. Mol. Sci. 2014;15:3118–3144. doi: 10.3390/ijms15023118. PubMed DOI PMC
Chen L., Magliano D.J., Zimmet P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012;8:228–236. doi: 10.1038/nrendo.2011.183. PubMed DOI
Han T.S., Lean M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016;5:204800401663337. doi: 10.1177/2048004016633371. PubMed DOI PMC
Lapik I.A., Galchenko A.V., Gapparova K.M. Micronutrient status in obese patients: A narrative review. Obes. Med. 2020;18:100224. doi: 10.1016/j.obmed.2020.100224. DOI
Via M. The Malnutrition of Obesity: Micronutrient Deficiencies That Promote Diabetes. Int. Sch. Res. Netw. Endocrinol. 2012;2012:103472. doi: 10.5402/2012/103472. PubMed DOI PMC
Rolo A.P., Palmeira C.M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006;212:167–178. doi: 10.1016/j.taap.2006.01.003. PubMed DOI
Rovira-Llopis S., Bañuls C., de Marañon A.M., Diaz-Morales N., Jover A., Garzon S., Rocha M., Victor V.M., Hernandez-Mijares A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic. Biol. Med. 2017;108:155–162. doi: 10.1016/j.freeradbiomed.2017.03.029. PubMed DOI
Hernandez-Mijares A., Rocha M., Rovira-Llopis S., Bañuls C., Bellod L., De Pablo C., Alvarez A., Roldan-Torres I., Sola-Izquierdo E., Victor V.M. Human leukocyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients and their association with silent myocardial ischemia. Diabetes Care. 2013;36:1695–1702. doi: 10.2337/dc12-1224. PubMed DOI PMC
Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010;107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545. PubMed DOI PMC
Nishikawa T., Edelstein D., Du X.L., Yamagishi S.I., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–790. doi: 10.1038/35008121. PubMed DOI
Yan S.D., Schmidt A.M., Anderson G.M., Zhang J., Brett J., Zou Y.S., Pinsky D., Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 1994;269:9889–9897. doi: 10.1016/S0021-9258(17)36966-1. PubMed DOI
Abbasihormozi S., Babapour V., Kouhkan A., Naslji A.N., Afraz K., Zolfaghary Z., Shahverdi A. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential. Cell J. 2019;21:307–313. PubMed PMC
Tunc O., Bakos H.W., Tremellen K. Impact of body mass index on seminal oxidative stress. Andrologia. 2011;43:121–128. doi: 10.1111/j.1439-0272.2009.01032.x. PubMed DOI
Golan R., Scovell J.M., Ramasamy R. Age-related testosterone decline is due to waning of both testicular and hypothalamic-pituitary function. Aging Male. 2015;18:201–204. doi: 10.3109/13685538.2015.1052392. PubMed DOI PMC
Gruenewald D.A., Naai M.A., Marck B.T., Matsumoto A.M. Age-related decrease in hypothalmic gonadotropin-releasing hormone (GnRH) gene expression, but not pituitary responsiveness to GnRH, in the male brown Norway rat. J. Androl. 2000;21:72–84. PubMed
Elmlinger M.W., Kühnel W., Wormstall H., Döller P.C. Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clin. Lab. 2005;51:625–632. PubMed
Beattie M.C., Adekola L., Papadopoulos V., Chen H., Zirkin B.R. Leydig cell aging and hypogonadism. Exp. Gerontol. 2015;68:87–91. doi: 10.1016/j.exger.2015.02.014. PubMed DOI PMC
Yoshii S.R., Kuma A., Akashi T., Hara T., Yamamoto A., Kurikawa Y., Itakura E., Tsukamoto S., Shitara H., Eishi Y., et al. Systemic analysis of Atg5-null mice rescued from neonatal lethality by transgenic ATG5 expression in neurons. Dev. Cell. 2016;39:116–130. doi: 10.1016/j.devcel.2016.09.001. PubMed DOI
Li W.R., Chen L., Chang Z.J., Xin H., Liu T., Zhang Y.Q., Li G.Y., Zhou F., Gong Y.Q., Gao Z.Z., et al. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J. Androl. 2011;13:881–888. doi: 10.1038/aja.2011.85. PubMed DOI PMC
Gao F., Li G., Liu C., Gao H., Wang H., Liu W., Chen M., Shang Y., Wang L., Shi J., et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J. Cell Biol. 2018;217:2103–2119. doi: 10.1083/jcb.201710078. PubMed DOI PMC
Hales D.B., Allen J.A., Shankara T., Janus P., Buck S., Diemer T., Hales K.H. Mitochondrial function in Leydig cell steroidogenesis. Ann. New York Acad. Sci. 2005;1061:120–134. doi: 10.1196/annals.1336.014. PubMed DOI
Midzak A.S., Chen H., Aon M.A., Papadopoulos V., Zirkin B.R. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol. Reprod. 2011;84:976–985. doi: 10.1095/biolreprod.110.087460. PubMed DOI PMC
Midzak A.S., Chen H., Papadopoulos V., Zirkin B.R. Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 2009;299:23–31. doi: 10.1016/j.mce.2008.07.016. PubMed DOI
Wang Y., Chen F., Ye L., Zirkin B., Chen H. Steroidogenesis in Leydig cells: Effects of aging and environmental factors. Reproduction. 2017;154:R111–R122. doi: 10.1530/REP-17-0064. PubMed DOI PMC
Chua M.L.K., Bristow R.G. Testosterone in androgen receptor signaling and DNA repair: Enemy or frenemy? Clin. Cancer Res. 2016;22:3124–3126. doi: 10.1158/1078-0432.CCR-16-0381. PubMed DOI
Gautam D.K., Misro M.M., Chaki S.P., Sehgal N. H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis. 2006;11:39–46. doi: 10.1007/s10495-005-3087-1. PubMed DOI
Michalakis K., Mintziori G., Kaprara A., Tarlatzis B.C., Goulis D.G. The complex interaction between obesity, metabolic syndrome and reproductive axis: A narrative review. Metabolism. 2013;62:457–478. doi: 10.1016/j.metabol.2012.08.012. PubMed DOI
Baker K., McGill J., Sharma R., Agarwal A., Sabanegh E. Pregnancy after varicocelectomy: Impact of postoperative motility and DFI. Urology. 2013;81:760–766. doi: 10.1016/j.urology.2012.12.005. PubMed DOI
Biobaku F., Ghanim H., Batra M., Dandona P. Macronutrient-mediated inflammation and oxidative stress: Relevance to insulin resistance, obesity, and atherogenesis. J. Clin. Endocrinol. Metab. 2019;104:6118–6128. doi: 10.1210/jc.2018-01833. PubMed DOI
Tan B.L., Norhaizan M.E., Liew W.P.P. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell. Longev. 2018;2018:9719584. doi: 10.1155/2018/9719584. PubMed DOI PMC
Vincent H.K., Innes K.E., Vincent K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. 2007;9:813–839. doi: 10.1111/j.1463-1326.2007.00692.x. PubMed DOI
Pitteloud N., Mootha V.K., Dwyer A.A., Hardin M., Lee H., Eriksson K.F., Tripathy D., Yialamas M., Groop L., Elahi D., et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28:1636–1642. doi: 10.2337/diacare.28.7.1636. PubMed DOI
Bobjer J., Katrinaki M., Tsatsanis C., Lundberg Giwercman Y., Giwercman A. Negative association between testosterone concentration and inflammatory markers in young men: A nested cross-sectional study. PLoS ONE. 2013;8:e61466. PubMed PMC
Kupelian V., Chiu G.R., Araujo A.B., Williams R.E., Clark R.V., McKinlay J.B. Association of sex hormones and C-reactive protein levels in men. Clin. Endocrinol. 2010;72:527–533. doi: 10.1111/j.1365-2265.2009.03713.x. PubMed DOI PMC
Dhindsa S., Ghanim H., Batra M., Kuhadiya N.D., Abuaysheh S., Sandhu S., Green K., Makdissi A., Hejna J., Chaudhuri A., et al. Insulin resistance and inflammation in hypogonadotropic hypogonadism and their reduction after testosterone replacement in men with type 2 diabetes. Diabetes Care. 2016;39:82–91. doi: 10.2337/dc15-1518. PubMed DOI PMC
Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC
Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative stress in cancer. Cancer Cell. 2020;38:167–197. doi: 10.1016/j.ccell.2020.06.001. PubMed DOI PMC
Fuoco D., Di Tomasso J., Boulos C., Kilgour R.D., Morais J.A., Borod M., Vigano A. Identifying nutritional, functional, and quality of life correlates with male hypogonadism in advanced cancer patients. Ecancermedicalscience. 2015;9:561. doi: 10.3332/ecancer.2015.561. PubMed DOI PMC
Burney B.O., Garcia J.M. Hypogonadism in male cancer patients. J. Cachexia Sarcopenia Muscle. 2012;3:149–155. doi: 10.1007/s13539-012-0065-7. PubMed DOI PMC
Zarotsky V., Huang M.-Y., Carman W., Morgentaler A., Singhal P.K., Coffin D., Jones T.H. Systematic literature review of the epidemiology of nongenetic forms of hypogonadism in adult males. J. Horm. 2014;2014:1–17. doi: 10.1155/2014/190347. PubMed DOI
Ng Tang Fui M., Hoermann R., Zajac J.D., Grossmann M. The effects of testosterone on body composition in obese men are not sustained after cessation of testosterone treatment. Clin. Endocrinol. 2017;87:336–343. doi: 10.1111/cen.13385. PubMed DOI
Caliber M., Saad F. Testosterone therapy for prevention and treatment of obesity in men. Androg. Clin. Res. Ther. 2020;1:40–61. doi: 10.1089/andro.2020.0010. DOI
Cunningham G.R. Testosterone and metabolic syndrome. Asian J. Androl. 2015;17:192–196. doi: 10.4103/1008-682X.148068. PubMed DOI PMC
Li S.Y., Zhao Y.L., Yang Y.F., Wang X., Nie M., Wu X.Y., Mao J.F. Metabolic effects of testosterone replacement therapy in patients with type 2 diabetes mellitus or metabolic syndrome: A meta-analysis. Int. J. Endocrinol. 2020;2020:4732021. doi: 10.1155/2020/4732021. PubMed DOI PMC
Gianatti E.J., Grossmann M. Testosterone deficiency in men with Type 2 diabetes: Pathophysiology and treatment. Diabet. Med. 2020;37:174–186. doi: 10.1111/dme.13977. PubMed DOI
Mancini A., Leone E., Festa R., Grande G., Silvestrini A., De Marinis L., Pontecorvi A., Maira G., Littarru G.P., Meucci E. Effects of testosterone on antioxidant systems in male secondary hypogonadism. J. Androl. 2008;29:622–629. doi: 10.2164/jandrol.107.004838. PubMed DOI
Hwang T.I.S., Liao T.L., Lin J.F., Lin Y.C., Lee S.Y., Lai Y.C., Kao S.H. Low-dose testosterone treatment decreases oxidative damage in TM3 Leydig cells. Asian J. Androl. 2011;13:432–437. doi: 10.1038/aja.2010.159. PubMed DOI PMC
Choobineh H., Sadighi Gilani M.A., Pasalar P., Jahanzad I., Ghorbani R., Hassanzadeh G. The effects of testosterone on oxidative stress markers in mice with spinal cord injuries. Int. J. Fertil. Steril. 2016;10:87–93. PubMed PMC
Makary S., Abdo M., Fekry E. Oxidative stress burden inhibits spermatogenesis in adult male rats: Testosterone protective effect. Can. J. Physiol. Pharmacol. 2018;96:372–381. doi: 10.1139/cjpp-2017-0459. PubMed DOI
Tóthová L., Celec P., Ostatníková D., Okuliarová M., Zeman M., Hodosy J. Effect of exogenous testosterone on oxidative status of the testes in adult male rats. Andrologia. 2013;45:417–423. doi: 10.1111/and.12032. PubMed DOI
Bhasin S., Brito J.P., Cunningham G.R., Hayes F.J., Hodis H.N., Matsumoto A.M., Snyder P.J., Swerdloff R.S., Wu F.C., Yialamas M.A. Testosterone therapy in men with hypogonadism: An endocrine society. J. Clin. Endocrinol. Metab. 2018;103:1715–1744. doi: 10.1210/jc.2018-00229. PubMed DOI
Cui Y., Zong H., Yan H., Zhang Y. The effect of testosterone replacement therapy on prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2014;17:132–143. doi: 10.1038/pcan.2013.60. PubMed DOI
Kardoust Parizi M., Abufaraj M., Fajkovic H., Kimura S., Iwata T., D’Andrea D., Karakiewicz P.I., Shariat S.F. Oncological safety of testosterone replacement therapy in prostate cancer survivors after definitive local therapy: A systematic literature review and meta-analysis. Urol. Oncol. Semin. Orig. Investig. 2019;37:637–646. doi: 10.1016/j.urolonc.2019.06.007. PubMed DOI
Patel A.S., Leong J.Y., Ramos L., Ramasamy R. Testosterone is a contraceptive and should not be used in men who desire fertility. World J. Men’s Health. 2019;37:45. doi: 10.5534/wjmh.180036. PubMed DOI PMC
Ho C.C.K., Tan H.M. Treatment of the hypogonadal infertile male—A review. Sex. Med. Rev. 2013;1:42–49. doi: 10.1002/smrj.4. PubMed DOI
Stokes V.J., Anderson R.A., George J.T. How does obesity affect fertility in men—And what are the treatment options? Clin. Endocrinol. 2015;82:633–638. doi: 10.1111/cen.12591. PubMed DOI
Saisho Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Targets. 2015;15:196–205. doi: 10.2174/1871530315666150316124019. PubMed DOI
De Araújo A.A., Pereira A.D.S.B.F., De Medeiros C.A.C.X., Brito G.A.D.C., Leitão R.F.D.C., Araújo L.D.S., Guedes P.M.M., Hiyari S., Pirih F.Q., De Araújo R.F. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS ONE. 2017;12:e0183506. doi: 10.1371/journal.pone.0183506. PubMed DOI PMC
Esteghamati A., Eskandari D., Mirmiranpour H., Noshad S., Mousavizadeh M., Hedayati M., Nakhjavani M. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: A randomized clinical trial. Clin. Nutr. 2013;32:179–185. doi: 10.1016/j.clnu.2012.08.006. PubMed DOI
Seifarth C., Schehler B., Schneider H.J. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp. Clin. Endocrinol. Diabetes. 2013;121:27–31. doi: 10.1055/s-0032-1327734. PubMed DOI
Faure M., Bertoldo M.J., Khoueiry R., Bongrani A., Brion F., Giulivi C., Dupont J., Froment P. Metformin in reproductive biology. Front. Endocrinol. 2018;9:675. doi: 10.3389/fendo.2018.00675. PubMed DOI PMC
Nasri H., Rafieian-Kopaei M. Metformin: Current knowledge. J. Res. Med. Sci. 2014;19:658–664. PubMed PMC
Desilets A.R., Dhakal-Karki S., Dunican K.C. Role of metformin for weight management in patients without type 2 diabetes. Ann. Pharmacother. 2008;42:817–826. doi: 10.1345/aph.1K656. PubMed DOI
Morgante G., Tosti C., Orvieto R., Musacchio M.C., Piomboni P., De Leo V. Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome. Fertil. Steril. 2011;95:2150–2152. doi: 10.1016/j.fertnstert.2010.12.009. PubMed DOI
Bertoldo M.J., Faure M., Dupont J., Froment P. AMPK: A master energy regulator for gonadal function. Front. Neurosci. 2015;9:235. doi: 10.3389/fnins.2015.00235. PubMed DOI PMC
Abdou H.S., Bergeron F., Tremblay J.J. A cell-autonomous molecular cascade initiated by amp-activated protein kinase represses steroidogenesis. Mol. Cell. Biol. 2014;34:4257–4271. doi: 10.1128/MCB.00734-14. PubMed DOI PMC
Tartarin P., Moison D., Guibert E., Dupont J., Habert R., Rouiller-Fabre V., Frydman N., Pozzi S., Frydman R., Lecureuil C., et al. Metformin exposure affects human and mouse fetal testicular cells. Hum. Reprod. 2012;27:3304–3314. doi: 10.1093/humrep/des264. PubMed DOI
Kim C., Barrett-Connor E., Aroda V.R., Mather K.J., Christophi C.A., Horton E.S., Pi-Sunyer X., Bray G.A., Labrie F., Golden S.H. Testosterone and depressive symptoms among men in the Diabetes Prevention Program. Psychoneuroendocrinology. 2016;72:63–71. doi: 10.1016/j.psyneuen.2016.06.009. PubMed DOI PMC
Hu Y., Ding B., Shen Y., Yan R.N., Li F.F., Sun R., Jing T., Lee K.O., Ma J.H. Rapid changes in serum testosterone in men with newly diagnosed type 2 diabetes with intensive insulin and metformin. Diabetes Care. 2021;44:1059–1061. doi: 10.2337/dc20-1558. PubMed DOI PMC
Al-Kuraishy H.M., Al-Gareeb A.I. Erectile dysfunction and low sex drive in men with type 2 DM: The potential role of diabetic pharmacotherapy. J. Clin. Diagn. Res. 2016;10:FC21–FC26. doi: 10.7860/JCDR/2016/19971.8996. PubMed DOI PMC
Giahi L., Mohammadmoradi S., Javidan A., Sadeghi M.R. Nutritional modifications in male infertility: A systematic review covering 2 decades. Nutr. Rev. 2016;74:118–130. doi: 10.1093/nutrit/nuv059. PubMed DOI PMC
Salas-Huetos A., Bulló M., Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update. 2017;23:371–389. doi: 10.1093/humupd/dmx006. PubMed DOI
Karayiannis D., Kontogianni M.D., Mendorou C., Douka L., Mastrominas M., Yiannakouris N. Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility. Hum. Reprod. 2017;32:215–222. doi: 10.1093/humrep/dew288. PubMed DOI
Di Daniele N., Noce A., Vidiri M.F., Moriconi E., Marrone G., Annicchiarico-Petruzzelli M., D’Urso G., Tesauro M., Rovella V., Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget. 2017;8:8947. doi: 10.18632/oncotarget.13553. PubMed DOI PMC
Key T.J.A., Roe L., Thorogood M., Moore J.W., Clark G.M.G., Wang D.Y. Testosterone, sex hormone-binding globulin, calculated free testosterone, and oestradiol in male vegans and omnivores. Br. J. Nutr. 1990;64:111–119. doi: 10.1079/BJN19900014. PubMed DOI
Håkonsen L., Thulstrup A., Aggerholm A., Olsen J., Bonde J., Andersen C., Bungum M., Ernst E., Hansen M., Ernst E., et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod. Health. 2011;8:24. doi: 10.1186/1742-4755-8-24. PubMed DOI PMC
Jaffar M., Ashraf M. Does weight loss improve fertility with respect to semen parameters—Results from a large cohort study. Int. J. Infertil. Fetal Med. 2017;8:12–17. doi: 10.5005/jp-journals-10016-1141. DOI
Camacho E.M., Huhtaniemi I.T., O’Neill T.W., Finn J.D., Pye S.R., Lee D.M., Tajar A., Bartfai G., Boonen S., Casanueva F.F., et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: Longitudinal results from the European Male Ageing Study. Eur. J. Endocrinol. 2013;168:445–455. doi: 10.1530/EJE-12-0890. PubMed DOI
Kaukua J., Pekkarinen T., Sane T., Mustajoki P. Sex hormones and sexual function in obese men losing weight. Obes. Res. 2003;11:689–694. doi: 10.1038/oby.2003.98. PubMed DOI
Grossmann M. Hypogonadism and male obesity: Focus on unresolved questions. Clin. Endocrinol. 2018;89:11–21. doi: 10.1111/cen.13723. PubMed DOI
Niskanen L., Laaksonen D.E., Punnonen K., Mustajoki P., Kaukua J., Rissanen A. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes. Metab. 2004;6:208–215. doi: 10.1111/j.1462-8902.2004.00335.x. PubMed DOI
Kumagai H., Yoshikawa T., Zempo-Miyaki A., Myoenzono K., Tsujimoto T., Tanaka K., Maeda S. Vigorous physical activity is associated with regular aerobic exercise-induced increased serum testosterone levels in overweight/obese men. Horm. Metab. Res. 2018;50:73–79. doi: 10.1055/s-0043-117497. PubMed DOI
Corona G., Rastrelli G., Monami M., Saad F., Luconi M., Lucchese M., Facchiano E., Sforza A., Forti G., Mannucci E., et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: A systematic review and meta-analysis. Eur. J. Endocrinol. 2013;168:829–843. doi: 10.1530/EJE-12-0955. PubMed DOI
Moatt J.P., Nakagawa S., Lagisz M., Walling C.A. The effect of dietary restriction on reproduction: A meta-analytic perspective. BMC Evol. Biol. 2016;16:199. doi: 10.1186/s12862-016-0768-z. PubMed DOI PMC
Adler M.I., Cassidy E.J., Fricke C., Bonduriansky R. The lifespan-reproduction trade-off under dietary restriction is sex-specific and context-dependent. Exp. Gerontol. 2013;48:539–548. doi: 10.1016/j.exger.2013.03.007. PubMed DOI
Kowaltowski A.J. Caloric restriction and redox state: Does this diet increase or decrease oxidant production? Redox Rep. 2011;16:237–241. doi: 10.1179/1351000211Y.0000000014. PubMed DOI PMC
Wu H., Ballantyne C.M. Metabolic inflammation and insulin resistance in obesity. Circ. Res. 2020:1549–1564. doi: 10.1161/CIRCRESAHA.119.315896. PubMed DOI PMC
Huang C.J., McAllister M.J., Slusher A.L., Webb H.E., Mock J.T., Acevedo E.O. Obesity-related oxidative stress: The impact of physical activity and diet manipulation. Sports Med. Open. 2015;1:32. doi: 10.1186/s40798-015-0031-y. PubMed DOI PMC
Sitzmann B.D., Brown D.I., Garyfallou V.T., Kohama S.G., Mattison J.A., Ingram D.K., Roth G.S., Ottinger M.A., Urbanski H.F. Impact of moderate calorie restriction on testicular morphology and endocrine function in adult rhesus macaques (Macaca mulatta) Age. 2014;36:183–197. doi: 10.1007/s11357-013-9563-6. PubMed DOI PMC
Cangemi R., Friedmann A.J., Holloszy J.O., Fontana L. Long-term effects of calorie restriction on serum sex-hormone concentrations in men. Aging Cell. 2010;9:236–242. doi: 10.1111/j.1474-9726.2010.00553.x. PubMed DOI PMC
Wong H.K., Hoermann R., Grossmann M. Reversible male hypogonadotropic hypogonadism due to energy deficit. Clin. Endocrinol. 2019;91:3–9. doi: 10.1111/cen.13973. PubMed DOI
Schulte D.M., Hahn M., Oberhäuser F., Malchau G., Schubert M., Heppner C., Müller N., Güdelhöfer H., Faust M., Krone W., et al. Caloric restriction increases serum testosterone concentrations in obese male subjects by two distinct mechanisms. Horm. Metab. Res. 2014;46:283–286. doi: 10.1055/s-0033-1358678. PubMed DOI
Calderón B., Galdón A., Calañas A., Peromingo R., Galindo J., García-Moreno F., Rodriguez-Velasco G., Martín-Hidalgo A., Vazquez C., Escobar-Morreale H.F., et al. Effects of bariatric surgery on male obesity-associated secondary hypogonadism: Comparison of laparoscopic gastric bypass with restrictive procedures. Obes. Surg. 2014;24:1686–1692. doi: 10.1007/s11695-014-1233-y. PubMed DOI
Samavat J., Facchiano E., Lucchese M., Forti G., Mannucci E., Maggi M., Luconi M. Hypogonadism as an additional indication for bariatric surgery in male morbid obesity? Eur. J. Endocrinol. 2014;171:555–560. doi: 10.1530/EJE-14-0596. PubMed DOI
Escobar-Morreale H.F., Santacruz E., Luque-Ramírez M., Carretero J.I.B. Prevalence of “obesity-associated gonadal dysfunction” in severely obese men and women and its resolution after bariatric surgery: A systematic review and meta-analysis. Hum. Reprod. Update. 2017;23:390–408. doi: 10.1093/humupd/dmx012. PubMed DOI
Pellitero S., Olaizola I., Alastrue A., Martínez E., Granada M.L., Balibrea J.M., Moreno P., Serra A., Navarro-Díaz M., Romero R., et al. Hypogonadotropic hypogonadism in morbidly obese males is reversed after bariatric surgery. Obes. Surg. 2012;22:1835–1842. doi: 10.1007/s11695-012-0734-9. PubMed DOI
Rao S.R., Kini S., Tamler R. Sex hormones and bariatric surgery in men. Gend. Med. 2011;8:300–311. doi: 10.1016/j.genm.2011.05.007. PubMed DOI
Xu J., Wu Q., Zhang Y., Pei C. Effect of bariatric surgery on male sexual function: A meta-analysis and systematic review. Sex. Med. 2019;7:270–281. doi: 10.1016/j.esxm.2019.06.003. PubMed DOI PMC
Fariello R.M., de Carvalho R.C., Spaine D.M., Andretta R.R., Caetano E.M., Sá G.P.D., Cedenho A.P., Fraietta R. Analysis of the functional aspects of sperm and testicular oxidative stress in individuals undergoing metabolic surgery. Obes. Surg. 2021;31:2887–2895. doi: 10.1007/s11695-021-05350-9. PubMed DOI
Rigon F.A., Ronsoni M.F., Hohl A., van de Sande-Lee S. Effects of bariatric surgery in male obesity-associated hypogonadism. Obes. Surg. 2019;29:2115–2125. doi: 10.1007/s11695-019-03829-0. PubMed DOI
Schmatz R., Bitencourt M.R., Patias L.D., Beck M., Alvarez G.D.C., Zanini D., Gutierres J.M., Diehl L.N., Pereira L.B., Leal C.A., et al. Evaluation of the biochemical, inflammatory and oxidative profile of obese patients given clinical treatment and bariatric surgery. Clin. Chim. Acta. 2017;465:72–79. doi: 10.1016/j.cca.2016.12.012. PubMed DOI
Choromańska B., Myśliwiec P., Łuba M., Wojskowicz P., Myśliwiec H., Choromańska K., Żendzian-Piotrowska M., Dadan J., Zalewska A., Maciejczyk M. Impact of weight loss on the total antioxidant/oxidant potential in patients with morbid obesity—A longitudinal study. Antioxidants. 2020;9:376. doi: 10.3390/antiox9050376. PubMed DOI PMC
Jiang H.W., Zhou Y., Zhou P.Y., Zhang T.Y., Hu J.Y., Bai X.T. Protective effects of bariatric surgery on kidney functions by inhibiting oxidative stress responses through activating PPARα in rats with diabetes. Front. Physiol. 2021;12:662666. doi: 10.3389/fphys.2021.662666. PubMed DOI PMC
Fejfer K., Buczko P., Niczyporuk M., Ładny J.R., Hady H.R., Knaś M., Waszkiel D., Klimiuk A., Zalewska A., Maciejczyk M. Oxidative modification of biomolecules in the nonstimulated and stimulated saliva of patients with morbid obesity treated with bariatric surgery. BioMed Res. Int. 2017;2017:4923769. doi: 10.1155/2017/4923769. PubMed DOI PMC
Ferraz-Bannitz R., Welendorf C.R., Coelho P.O., Salgado W., Nonino C.B., Beraldo R.A., Foss-Freitas M.C. Bariatric surgery can acutely modulate ER-stress and inflammation on subcutaneous adipose tissue in non-diabetic patients with obesity. Diabetol. Metab. Syndr. 2021;13:19. doi: 10.1186/s13098-021-00623-w. PubMed DOI PMC
Da Silva V.R.G., Moreira E.A.M., Wilhelm-Filho D., De Miranda J.X., Benincá J.P., Vigil S.V.G., Moratelli A.M.B., Garlet T.R., De Souza Meirelles M.S., Vannucchi H., et al. Proinflammatory and oxidative stress markers in patients submitted to Roux-en-Y gastric bypass after 1 year of follow-up. Eur. J. Clin. Nutr. 2012;66:891–899. doi: 10.1038/ejcn.2012.17. PubMed DOI
Peng C., Wang X., Chen J., Jiao R., Wang L., Li Y.M., Zuo Y., Liu Y., Lei L., Ma K.Y., et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014;2014:831841. doi: 10.1155/2014/831841. PubMed DOI PMC
Akbari M., Ostadmohammadi V., Tabrizi R., Mobini M., Lankarani K.B., Moosazadeh M., Heydari S.T., Chamani M., Kolahdooz F., Asemi Z. The effects of alpha-lipoic acid supplementation on inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. 2018;15:39. doi: 10.1186/s12986-018-0274-y. PubMed DOI PMC
Fan L., Feng Y., Chen G.C., Qin L.Q., Fu C.L., Chen L.H. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2017;119:128–136. doi: 10.1016/j.phrs.2017.01.032. PubMed DOI
Brie D., Sahebkar A., Penson P.E., Dinca M., Ursoniu S., Serban M.C., Zanchetti A., Howard G., Ahmed A., Aronow W.S., et al. Effects of pentoxifylline on inflammatorymarkers and blood pressure: A systematic reviewandmeta-analysis of randomized controlled trials. J. Hypertens. 2016;34:2318–2329. doi: 10.1097/HJH.0000000000001086. PubMed DOI
Martins Gregório B., Benchimol De Souza D., Amorim de Morais Nascimento F., Matta L., Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr. Pharm. Des. 2016;22:859–869. doi: 10.2174/1381612822666151209152352. PubMed DOI
Kooti W., Farokhipour M., Asadzadeh Z., Ashtary-Larky D., Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician. 2016;8:1832–1842. doi: 10.19082/1832. PubMed DOI PMC
Alizadeh F., Javadi M., Karami A.A., Gholaminejad F., Kavianpour M., Haghighian H.K. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phyther. Res. 2018;32:514–521. doi: 10.1002/ptr.5998. PubMed DOI
Qin F., Shen T., Cao H., Qian J., Zou D., Ye M., Pei H. CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation. Int. J. Nanomed. 2019;14:4601. doi: 10.2147/IJN.S206561. PubMed DOI PMC
Yahyavy S., Valizadeh A., Saki G., Khorsandi L. Taurine ameliorates cytotoxic effects of Di(2-ethylhexyl) phthalate on Leydig cells. Andrologia. 2021;53:e14146. doi: 10.1111/and.14146. PubMed DOI
Opuwari C.S., Matshipi M.N., Phaahla M.K., Setumo M.A., Moraswi R.T., Zitha A.A., Offor U., Choma S.S.R. Androgenic effect of aqueous leaf extract of Moringa oleifera on Leydig TM3 cells in vitro. Andrologia. 2020;52:e13825. doi: 10.1111/and.13825. PubMed DOI
Jambor T., Arvay J., Ivanisova E., Tvrda E., Kovacik A., Greifova H., Lukac N. Investigation of the properties and effects of Salvia Officinalis L. on the viability, steroidogenesis and reactive oxygen species (ROS) production in TM3 leydig cells in vitro. Physiol. Res. 2020;69:661–673. doi: 10.33549/physiolres.934457. PubMed DOI PMC
Wang J.Y., Lee Y.J., Chou M.C., Chang R., Chiu C.H., Liang Y.J., Wu L.S. Astaxanthin protects steroidogenesis from hydrogen peroxide-induced oxidative stress in mouse Leydig cells. Mar. Drugs. 2015;13:1375–1388. doi: 10.3390/md13031375. PubMed DOI PMC
Deng S.L., Zhang B.L., Reiter R.J., Liu Y.X. Melatonin ameliorates inflammation and oxidative stress by suppressing the P38MAPK signaling pathway in LPS-induced sheep orchitis. Antioxidants. 2020;9:1277. doi: 10.3390/antiox9121277. PubMed DOI PMC
Greifová H., Jambor T., Tokárová K., Speváková I., Knížatová N., Lukáč N. Resveratrol attenuates hydrogen peroxide-induced oxidative stress in TM3 Leydig cells in vitro. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2020;55:585–595. doi: 10.1080/10934529.2020.1717899. PubMed DOI
Ma J., Yang H., Liu L., Wan Y., Wang F. Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway. Theriogenology. 2021;173:83–92. doi: 10.1016/j.theriogenology.2021.07.011. PubMed DOI
Banerjee B., Chakraborty S., Chakraborty P., Ghosh D., Jana K. Protective effect of resveratrol on benzo(a)pyrene induced dysfunctions of steroidogenesis and steroidogenic acute regulatory gene expression in Leydig cells. Front. Endocrinol. 2019;10:272. doi: 10.3389/fendo.2019.00272. PubMed DOI PMC
Sun J., Wang H., Liu B., Shi W., Shi J., Zhang Z., Xing J. Rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways. Biomed. Pharmacother. 2017;88:500–506. doi: 10.1016/j.biopha.2017.01.066. PubMed DOI
Hu J., Yu Q., Zhao F., Ji J., Jiang Z., Chen X., Gao P., Ren Y., Shao S., Zhang L., et al. Protection of quercetin against triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells. Chem. Biol. Interact. 2015;240:38–46. doi: 10.1016/j.cbi.2015.08.004. PubMed DOI
Chang M.S., Kim W.N., Yang W.M., Kim H.Y., Oh J.H., Park S.K. Cytoprotective effects of Morinda officinalis against hydrogen peroxide-induced oxidative stress in Leydig TM3 cells. Asian J. Androl. 2008;10:667–674. doi: 10.1111/j.1745-7262.2008.00414.x. PubMed DOI
Murugesan P., Muthusamy T., Balasubramanian K., Arunakaran J. Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)-Induced oxidative damage in Leydig cells. Free Radic. Res. 2005;39:1259–1272. doi: 10.1080/10715760500308154. PubMed DOI
Bashandy S.A.E.M., Omara E.A.A., Ebaid H., Amin M.M., Soliman M.S. Role of zinc as an antioxidant and anti-inflammatory to relieve cadmium oxidative stress induced testicular damage in rats. Asian Pac. J. Trop. Biomed. 2016;6:1056–1064. doi: 10.1016/j.apjtb.2016.08.016. DOI
Aggarwal A., Misro M.M., Maheshwari A., Sehgal N. Differential modulation of apoptotic gene expression by N-acetyl-l-cysteine in Leydig cells stimulated persistently with hCG in vivo. Mol. Cell. Endocrinol. 2012;348:155–164. doi: 10.1016/j.mce.2011.08.002. PubMed DOI
Gao T., Lin M., Shao B., Zhou Q., Wang Y., Chen X., Zhao D., Dai X., Shen C., Cheng H., et al. BMI1 promotes steroidogenesis through maintaining redox homeostasis in mouse MLTC-1 and primary Leydig cells. Cell Cycle. 2020;19:1884–1898. doi: 10.1080/15384101.2020.1779471. PubMed DOI PMC
Altındağ F., Meydan İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia. 2021;53:e14189. doi: 10.1111/and.14189. PubMed DOI
Elumalai P., Krishnamoorthy G., Selvakumar K., Arunkumar R., Venkataraman P., Arunakaran J. Studies on the protective role of lycopene against polychlorinated biphenyls (Aroclor 1254)-induced changes in StAR protein and cytochrome P450 scc enzyme expression on Leydig cells of adult rats. Reprod. Toxicol. 2009;27:41–45. doi: 10.1016/j.reprotox.2008.11.053. PubMed DOI
Girish B.P., Reddy P.S. Forskolin ameliorates mancozeb-induced testicular and epididymal toxicity in Wistar rats by reducing oxidative toxicity and by stimulating steroidogenesis. J. Biochem. Mol. Toxicol. 2018;32:e22026. doi: 10.1002/jbt.22026. PubMed DOI
Wang H.J., Wang Q., Lv Z.M., Wang C.L., Li C.P., Rong Y.L. Resveratrol appears to protect against oxidative stress and steroidogenesis collapse in mice fed high-calorie and high-cholesterol diet. Andrologia. 2015;47:59–65. doi: 10.1111/and.12231. PubMed DOI
Mosbah R., Yousef M.I., Maranghi F., Mantovani A. Protective role of Nigella sativa oil against reproductive toxicity, hormonal alterations, and oxidative damage induced by chlorpyrifos in male rats. Toxicol. Ind. Health. 2016;32:1266–1277. doi: 10.1177/0748233714554675. PubMed DOI
Jeong H.C., Jeon S.H., Guan Qun Z., Bashraheel F., Choi S.W., Kim S.J., Bae W.J., Cho H.J., Ha U.S., Hong S.H., et al. Lycium chinense Mill improves hypogonadism via anti-oxidative stress and anti-apoptotic effect in old aged rat model. Aging Male. 2020;23:287–296. doi: 10.1080/13685538.2018.1498079. PubMed DOI
Alotaibi B., El-Masry T.A., Tousson E., Alarfaj S.J., Saleh A. Therapeutic effects of rocket seeds (Eruca sativa L.) against testicular toxicity and oxidative stress caused by silver nanoparticles injection in rats. Environ. Toxicol. 2020;35:952–960. PubMed
Abd H.H., Ahmed H.A., Mutar T.F. Moringa oleifera leaves extract modulates toxicity, sperms alterations, oxidative stress, and testicular damage induced by tramadol in male rats. Toxicol. Res. 2020;9:101–106. doi: 10.1093/toxres/tfaa009. PubMed DOI PMC
Karna K.K., Choi B.R., Kim M.J., Kim H.K., Park J.K. The effect of Schisandra chinensis baillon on crosstalk between oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in testes of varicocele-induced SD rat. Int. J. Mol. Sci. 2019;20:5785. doi: 10.3390/ijms20225785. PubMed DOI PMC
Choi S.W., Jeon S.H., Kwon E.B., Zhu G.Q., Lee K.W., Choi J.B., Jeong H.C., Kim K.S., Bae S.R., Bae W.J., et al. Effect of Korean herbal formula (modified Ojayeonjonghwan) on androgen receptor expression in an aging rat model of late onset hypogonadism. World J. Men’s Health. 2019;37:105–112. doi: 10.5534/wjmh.180051. PubMed DOI PMC
Bae W.J., Zhu G.Q., Choi S.W., Jeong H.C., Bashraheel F., Kim K.S., Kim S.J., Cho H.J., Ha U.S., Hong S.H., et al. Antioxidant and antifibrotic effect of a herbal formulation in vitro and in the experimental andropause via nrf2/ho-1 signaling pathway. Oxid. Med. Cell. Longev. 2017;2017:6024839. doi: 10.1155/2017/6024839. PubMed DOI PMC
Zhang K., Fu L., An Q., Hu W., Liu J., Tang X., Ding Y., Lu W., Liang X., Shang X., et al. Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complement. Med. Ther. 2020;20:42. doi: 10.1186/s12906-019-2799-7. PubMed DOI PMC
Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., et al. The achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 2015;14:644–658. doi: 10.1111/acel.12344. PubMed DOI PMC
Dookun E., Passos J.F., Arthur H.M., Richardson G.D. Therapeutic potential of senolytics in cardiovascular disease. Cardiovasc. Drugs Ther. 2020:1–10. doi: 10.1007/s10557-020-07075-w. PubMed DOI PMC
Kaur A., Macip S., Stover C.M. An appraisal on the value of using nutraceutical based senolytics and senostatics in aging. Front. Cell Dev. Biol. 2020;8:218. doi: 10.3389/fcell.2020.00218. PubMed DOI PMC
Li W., Qin L., Feng R., Hu G., Sun H., He Y., Zhang R. Emerging senolytic agents derived from natural products. Mech. Ageing Dev. 2019;181:1–6. doi: 10.1016/j.mad.2019.05.001. PubMed DOI
Zhang C., Xie Y., Chen H., Lv L., Yao J., Zhang M., Xia K., Feng X., Li Y., Liang X., et al. FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging. 2020;12:1272–1284. doi: 10.18632/aging.102682. PubMed DOI PMC
Leisegang K. Herbal Medicine in Andrology. Academic Press; Cambridge, MA, USA: 2021. Herbal pharmacognosy: An introduction; pp. 17–26.
Pérez-Torres I., Castrejón-Téllez V., Soto M.E., Rubio-Ruiz M.E., Manzano-Pech L., Guarner-Lans V. Oxidative stress, plant natural antioxidants, and obesity. Int. J. Mol. Sci. 2021;22:1786. doi: 10.3390/ijms22041786. PubMed DOI PMC
Mitjavila M.T., Moreno J.J. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol. 2012;84:1113–1122. doi: 10.1016/j.bcp.2012.07.017. PubMed DOI
Nazarian-Samani Z., Sewell R.D.E., Lorigooini Z., Rafieian-Kopaei M. Medicinal plants with multiple effects on diabetes mellitus and its complications: A systematic review. Curr. Diab. Rep. 2018;18:72. doi: 10.1007/s11892-018-1042-0. PubMed DOI
Karunakaran U., Park K.G. A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab. J. 2013;37:106–112. doi: 10.4093/dmj.2013.37.2.106. PubMed DOI PMC
Alahmadi B. Effect of herbal medicine on fertility potential in experimental animals—An update review. Mater. Socio-Med. 2020;32:140. doi: 10.5455/msm.2020.32.140-147. PubMed DOI PMC
Agarwal A., Majzoub A., Baskaran S., Selvam M.K.P., Cho C.L.C.L., Henkel R., Finelli R., Leisegang K., Sengupta P., Barbarosie C., et al. Sperm DNA fragmentation: A new guideline for clinicians. World J. Men’s Health. 2020;38:412–471. doi: 10.5534/wjmh.200128. PubMed DOI PMC
Smith S.J., Lopresti A.L., Teo S.Y.M., Fairchild T.J. Examining the effects of herbs on testosterone concentrations in men: A systematic review. Adv. Nutr. 2021;12:744–765. doi: 10.1093/advances/nmaa134. PubMed DOI PMC
Leisegang K., Finelli R. Alternative medicine and herbal remedies in the treatment of erectile dysfunction: A systematic review. Arab J. Urol. 2021;19:323–339. doi: 10.1080/2090598X.2021.1926753. PubMed DOI PMC
Martin L.J., Touaibia M. Improvement of testicular steroidogenesis using flavonoids and isoflavonoids for prevention of late-onset male hypogonadism. Antioxidants. 2020;9:237. doi: 10.3390/antiox9030237. PubMed DOI PMC
Halliwell B. The antioxidant paradox: Less paradoxical now? Br. J. Clin. Pharmacol. 2013;75:637–644. doi: 10.1111/j.1365-2125.2012.04272.x. PubMed DOI PMC
Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC
Henkel R., Sandhu I.S., Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia. 2019;51:e13162. doi: 10.1111/and.13162. PubMed DOI
Mentor S., Fisher D. Aggressive Antioxidant Reductive Stress Impairs Brain Endothelial Cell Angiogenesis and Blood Brain Barrier Function. Curr. Neurovasc. Res. 2016;14:71–81. doi: 10.2174/1567202613666161129113950. PubMed DOI
Singh F., Charles A.L., Schlagowski A.I., Bouitbir J., Bonifacio A., Piquard F., Krähenbühl S., Geny B., Zoll J. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim. Biophys. Acta Mol. Cell Res. 2015;1853:1574–1585. doi: 10.1016/j.bbamcr.2015.03.006. PubMed DOI