The Mechanisms and Management of Age-Related Oxidative Stress in Male Hypogonadism Associated with Non-communicable Chronic Disease

. 2021 Nov 18 ; 10 (11) : . [epub] 20211118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34829704

Androgens have diverse functions in muscle physiology, lean body mass, the regulation of adipose tissue, bone density, neurocognitive regulation, and spermatogenesis, the male reproductive and sexual function. Male hypogonadism, characterized by reduced testosterone, is commonly seen in ageing males, and has a complex relationship as a risk factor and a comorbidity in age-related noncommunicable chronic diseases (NCDs), such as obesity, metabolic syndrome, type 2 diabetes, and malignancy. Oxidative stress, as a significant contributor to the ageing process, is a common feature between ageing and NCDs, and the related comorbidities, including hypertension, dyslipidemia, hyperglycemia, hyperinsulinemia, and chronic inflammation. Oxidative stress may also be a mediator of hypogonadism in males. Consequently, the management of oxidative stress may represent a novel therapeutic approach in this context. Therefore, this narrative review aims to discuss the mechanisms of age-related oxidative stress in male hypogonadism associated with NCDs and discusses current and potential approaches for the clinical management of these patients, which may include conventional hormone replacement therapy, nutrition and lifestyle changes, adherence to the optimal body mass index, and dietary antioxidant supplementation and/or phytomedicines.

Zobrazit více v PubMed

Pillerová M., Borbélyová V., Hodosy J., Riljak V., Renczés E., Frick K.M., Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front. Neuroendocrinol. 2021;62:100926. doi: 10.1016/j.yfrne.2021.100926. PubMed DOI PMC

Traish A.M. Negative impact of testosterone deficiency and 5α-reductase inhibitors therapy on metabolic and sexual function in men. Adv. Exp. Med. Biol. 2017;1043:473–526. doi: 10.1007/978-3-319-70178-3_22. PubMed DOI

Dandona P., Rosenberg M.T. A practical guide to male hypogonadism in the primary care setting. Int. J. Clin. Pract. 2010;64:682–696. doi: 10.1111/j.1742-1241.2010.02355.x. PubMed DOI PMC

Araujo A.B., Wittert G.A. Endocrinology of the aging male. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:303–319. doi: 10.1016/j.beem.2010.11.004. PubMed DOI PMC

Morrell C.N. Reactive oxygen species: Finding the right balance. Circ. Res. 2008;103:571–572. doi: 10.1161/CIRCRESAHA.108.184325. PubMed DOI PMC

Smetana K., Lacina L., Szabo P., Dvoánková B., Broẑ P., Ŝedo A. Ageing as an important risk factor for cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI

Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020;57:100982. doi: 10.1016/j.arr.2019.100982. PubMed DOI

Höhn A., Weber D., Jung T., Ott C., Hugo M., Kochlik B., Kehm R., König J., Grune T., Castro J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. doi: 10.1016/j.redox.2016.12.001. PubMed DOI PMC

Dohle G.R., Smit M., Weber R.F.A. Androgens and male fertility. World J. Urol. 2003;21:341–345. doi: 10.1007/s00345-003-0365-9. PubMed DOI

Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC

Payne A.H., Youngblood G.L., Sha L., Burgos-Trinidad M., Hammond S.H. Hormonal regulation of steroidogenic enzyme gene expression in Leydig cells. J. Steroid Biochem. Mol. Biol. 1992;43:895–906. doi: 10.1016/0960-0760(92)90317-C. PubMed DOI

Czub M.P., Venkataramany B.S., Majorek K.A., Handing K.B., Porebski P.J., Beeram S.R., Suh K., Woolfork A.G., Hage D.S., Shabalin I.G., et al. Testosterone meets albumin-the molecular mechanism of sex hormone transport by serum albumins. Chem. Sci. 2019;10:1607–1618. doi: 10.1039/C8SC04397C. PubMed DOI PMC

Pivonello R., Menafra D., Riccio E., Garifalos F., Mazzella M., De Angelis C., Colao A.A. Metabolic disorders and male hypogonadotropic hypogonadism. Front. Endocrinol. 2019;10:345. doi: 10.3389/fendo.2019.00345. PubMed DOI PMC

Roychoudhury S., Chakraborty S., Choudhury A.P., Das A., Jha N.K., Slama P., Nath M., Massanyi P., Ruokolainen J., Kesari K.K. Environmental factors-induced oxidative stress: Hormonal and molecular pathway disruptions in hypogonadism and erectile dysfunction. Antioxidants. 2021;10:837. doi: 10.3390/antiox10060837. PubMed DOI PMC

Darby E., Anawalt B.D. Male hypogonadism: An update on diagnosis and treatment. Treat. Endocrinol. 2005;4:293–309. doi: 10.2165/00024677-200504050-00003. PubMed DOI

Baskaran S., Finelli R., Agarwal A. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia. 2020;53:e13577. doi: 10.1111/and.13577. PubMed DOI

Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014;2014:761264. doi: 10.1155/2014/761264. PubMed DOI PMC

Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Martindale J.L., Holbrook N.J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 2002;192:1–15. doi: 10.1002/jcp.10119. PubMed DOI

Ray P., Huang B., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC

Beatty S., Koh H.H., Phil M., Henson D., Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 2000;45:115–134. doi: 10.1016/S0039-6257(00)00140-5. PubMed DOI

Maritim A.C., Sanders R.A., Watkins J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003;17:24–38. doi: 10.1002/jbt.10058. PubMed DOI

Kattoor A.J., Pothineni N.V.K., Palagiri D., Mehta J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017;19:42. doi: 10.1007/s11883-017-0678-6. PubMed DOI

Uttara B., Singh A., Zamboni P., Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009;7:65–74. doi: 10.2174/157015909787602823. PubMed DOI PMC

Agarwal A., Parekh N., Panner Selvam M.K., Henkel R., Shah R., Homa S.T., Ramasamy R., Ko E., Tremellen K., Esteves S., et al. Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J. Men’s Health. 2019;37:296. doi: 10.5534/wjmh.190055. PubMed DOI PMC

Hanukoglu I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 2006;38:171–196. doi: 10.1080/03602530600570040. PubMed DOI

Ziegler G.A., Vonrhein C., Hanukoglu I., Schulz G.E. The structure of adrenodoxin reductase of mitochondrial P450 systems: Electron transfer for steroid biosynthesis. J. Mol. Biol. 1999;289:981–990. doi: 10.1006/jmbi.1999.2807. PubMed DOI

Quinn P.G., Payne A.H. Steroid product-induced, oxygen-mediated damage of microsomal cytochrome P-450 enzymes in Leydig cell cultures. Relationship to desensitization. J. Biol. Chem. 1985;260:2092–2099. doi: 10.1016/S0021-9258(18)89521-7. PubMed DOI

Tai P., Ascoli M. Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of RAS and the phosphorylation of ERK1/2 in leydig cells. Mol. Endocrinol. 2011;25:885–893. doi: 10.1210/me.2010-0489. PubMed DOI PMC

Tai P., Shiraishi K., Ascoli M. Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology. 2009;150:3766–3773. doi: 10.1210/en.2009-0207. PubMed DOI PMC

Martinelle N., Holst M., Söder O., Svechnikov K. Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat leydig cells by human chorionic gonadotropin. Endocrinology. 2004;145:4629–4634. doi: 10.1210/en.2004-0496. PubMed DOI

Lee S.Y., Gong E.Y., Hong C.Y., Kim K.H., Han J.S., Ryu J.C., Chae H.Z., Yun C.H., Lee K. ROS inhibit the expression of testicular steroidogenic enzyme genes via the suppression of Nur77 transactivation. Free Radic. Biol. Med. 2009;47:1591–1600. doi: 10.1016/j.freeradbiomed.2009.09.004. PubMed DOI

Lin H.L., Myshkin E., Waskell L., Hollenberg P.F. Peroxynitrite inactivation of human cytochrome P450s 2B6 and 2E1: Heme modification and site-specific nitrotyrosine formation. Chem. Res. Toxicol. 2007;20:1612–1622. doi: 10.1021/tx700220e. PubMed DOI

Karuzina I.I., Archakov A.I. The oxidative inactivation of cytochrome P450 in monooxygenase reactions. Free Radic. Biol. Med. 1994;16:73–97. doi: 10.1016/0891-5849(94)90245-3. PubMed DOI

Chen H., Zhou L., Lin C., Beattie M., Liu J., Zirkin B. Effect of glutathione redox state on Leydig cell susceptibility to acute oxidative stress. Mol. Cell. Endocrinol. 2010;323:147–154. doi: 10.1016/j.mce.2010.02.034. PubMed DOI PMC

Abidi P., Zhang H., Zaidi S.M., Shen W.J., Leers-Sucheta S., Cortez Y., Han J., Azhar S. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. J. Endocrinol. 2008;198:193–207. doi: 10.1677/JOE-07-0570. PubMed DOI

Zaidi S.K., Shen W.J., Bittner S., Bittner A., McLean M.P., Han J., Davis R.J., Kraemer F.B., Azhar S. p38 MAPK regulates steroidogenesis through transcriptional repression of StAR gene. J. Mol. Endocrinol. 2014;53:1–16. doi: 10.1530/JME-13-0287. PubMed DOI PMC

Wang X., Dyson M.T., Jo Y., Stocco D.M. Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology. 2003;144:3368–3375. doi: 10.1210/en.2002-0081. PubMed DOI

Wang X.J., Shen C.L., Dyson M.T., Eimerl S., Orly J., Hutson J.C., Stocco D.M. Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology. 2005;146:4202–4208. doi: 10.1210/en.2005-0298. PubMed DOI

Diemer T., Allen J.A., Hales H.K., Hales D.B. Reactive oxygen disrupts mitochondria in MA-10 tumor leydig cells and inhibits steroidogenic acute regulatory (STAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–2891. doi: 10.1210/en.2002-0090. PubMed DOI

Chen H., Jin S., Guo J., Kombairaju P., Biswal S., Zirkin B.R. Knockout of the transcription factor Nrf2: Effects on testosterone production by aging mouse Leydig cells. Mol. Cell. Endocrinol. 2015;409:113–120. doi: 10.1016/j.mce.2015.03.013. PubMed DOI PMC

Chen H., Pechenino A.S., Liu J., Beattie M.C., Brown T.R., Zirkin B.R. Effect of glutathione depletion on Leydig cell steroidogenesis in young and old Brown Norway rats. Endocrinology. 2008;149:2612–2619. doi: 10.1210/en.2007-1245. PubMed DOI PMC

Fernandez-Marcos P.J., Nóbrega-Pereira S. NADPH: New oxygen for the ROS theory of aging. Oncotarget. 2016;7:50814–50815. doi: 10.18632/oncotarget.10744. PubMed DOI PMC

Linford N.J., Schriner S.E., Rabinovitch P.S. Oxidative damage and aging: Spotlight on mitochondria. Cancer Res. 2006;66:2497–2499. doi: 10.1158/0008-5472.CAN-05-3163. PubMed DOI

Sharifi-Rad M., Anil Kumar N.V., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Tsouh Fokou P.V., Azzini E., Peluso I., et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694. PubMed DOI PMC

Rupérez A.I., Gil A., Aguilera C.M. Genetics of oxidative stress in obesity. Int. J. Mol. Sci. 2014;15:3118–3144. doi: 10.3390/ijms15023118. PubMed DOI PMC

Chen L., Magliano D.J., Zimmet P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012;8:228–236. doi: 10.1038/nrendo.2011.183. PubMed DOI

Han T.S., Lean M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016;5:204800401663337. doi: 10.1177/2048004016633371. PubMed DOI PMC

Lapik I.A., Galchenko A.V., Gapparova K.M. Micronutrient status in obese patients: A narrative review. Obes. Med. 2020;18:100224. doi: 10.1016/j.obmed.2020.100224. DOI

Via M. The Malnutrition of Obesity: Micronutrient Deficiencies That Promote Diabetes. Int. Sch. Res. Netw. Endocrinol. 2012;2012:103472. doi: 10.5402/2012/103472. PubMed DOI PMC

Rolo A.P., Palmeira C.M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006;212:167–178. doi: 10.1016/j.taap.2006.01.003. PubMed DOI

Rovira-Llopis S., Bañuls C., de Marañon A.M., Diaz-Morales N., Jover A., Garzon S., Rocha M., Victor V.M., Hernandez-Mijares A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic. Biol. Med. 2017;108:155–162. doi: 10.1016/j.freeradbiomed.2017.03.029. PubMed DOI

Hernandez-Mijares A., Rocha M., Rovira-Llopis S., Bañuls C., Bellod L., De Pablo C., Alvarez A., Roldan-Torres I., Sola-Izquierdo E., Victor V.M. Human leukocyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients and their association with silent myocardial ischemia. Diabetes Care. 2013;36:1695–1702. doi: 10.2337/dc12-1224. PubMed DOI PMC

Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010;107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545. PubMed DOI PMC

Nishikawa T., Edelstein D., Du X.L., Yamagishi S.I., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–790. doi: 10.1038/35008121. PubMed DOI

Yan S.D., Schmidt A.M., Anderson G.M., Zhang J., Brett J., Zou Y.S., Pinsky D., Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 1994;269:9889–9897. doi: 10.1016/S0021-9258(17)36966-1. PubMed DOI

Abbasihormozi S., Babapour V., Kouhkan A., Naslji A.N., Afraz K., Zolfaghary Z., Shahverdi A. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential. Cell J. 2019;21:307–313. PubMed PMC

Tunc O., Bakos H.W., Tremellen K. Impact of body mass index on seminal oxidative stress. Andrologia. 2011;43:121–128. doi: 10.1111/j.1439-0272.2009.01032.x. PubMed DOI

Golan R., Scovell J.M., Ramasamy R. Age-related testosterone decline is due to waning of both testicular and hypothalamic-pituitary function. Aging Male. 2015;18:201–204. doi: 10.3109/13685538.2015.1052392. PubMed DOI PMC

Gruenewald D.A., Naai M.A., Marck B.T., Matsumoto A.M. Age-related decrease in hypothalmic gonadotropin-releasing hormone (GnRH) gene expression, but not pituitary responsiveness to GnRH, in the male brown Norway rat. J. Androl. 2000;21:72–84. PubMed

Elmlinger M.W., Kühnel W., Wormstall H., Döller P.C. Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clin. Lab. 2005;51:625–632. PubMed

Beattie M.C., Adekola L., Papadopoulos V., Chen H., Zirkin B.R. Leydig cell aging and hypogonadism. Exp. Gerontol. 2015;68:87–91. doi: 10.1016/j.exger.2015.02.014. PubMed DOI PMC

Yoshii S.R., Kuma A., Akashi T., Hara T., Yamamoto A., Kurikawa Y., Itakura E., Tsukamoto S., Shitara H., Eishi Y., et al. Systemic analysis of Atg5-null mice rescued from neonatal lethality by transgenic ATG5 expression in neurons. Dev. Cell. 2016;39:116–130. doi: 10.1016/j.devcel.2016.09.001. PubMed DOI

Li W.R., Chen L., Chang Z.J., Xin H., Liu T., Zhang Y.Q., Li G.Y., Zhou F., Gong Y.Q., Gao Z.Z., et al. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J. Androl. 2011;13:881–888. doi: 10.1038/aja.2011.85. PubMed DOI PMC

Gao F., Li G., Liu C., Gao H., Wang H., Liu W., Chen M., Shang Y., Wang L., Shi J., et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J. Cell Biol. 2018;217:2103–2119. doi: 10.1083/jcb.201710078. PubMed DOI PMC

Hales D.B., Allen J.A., Shankara T., Janus P., Buck S., Diemer T., Hales K.H. Mitochondrial function in Leydig cell steroidogenesis. Ann. New York Acad. Sci. 2005;1061:120–134. doi: 10.1196/annals.1336.014. PubMed DOI

Midzak A.S., Chen H., Aon M.A., Papadopoulos V., Zirkin B.R. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol. Reprod. 2011;84:976–985. doi: 10.1095/biolreprod.110.087460. PubMed DOI PMC

Midzak A.S., Chen H., Papadopoulos V., Zirkin B.R. Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 2009;299:23–31. doi: 10.1016/j.mce.2008.07.016. PubMed DOI

Wang Y., Chen F., Ye L., Zirkin B., Chen H. Steroidogenesis in Leydig cells: Effects of aging and environmental factors. Reproduction. 2017;154:R111–R122. doi: 10.1530/REP-17-0064. PubMed DOI PMC

Chua M.L.K., Bristow R.G. Testosterone in androgen receptor signaling and DNA repair: Enemy or frenemy? Clin. Cancer Res. 2016;22:3124–3126. doi: 10.1158/1078-0432.CCR-16-0381. PubMed DOI

Gautam D.K., Misro M.M., Chaki S.P., Sehgal N. H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis. 2006;11:39–46. doi: 10.1007/s10495-005-3087-1. PubMed DOI

Michalakis K., Mintziori G., Kaprara A., Tarlatzis B.C., Goulis D.G. The complex interaction between obesity, metabolic syndrome and reproductive axis: A narrative review. Metabolism. 2013;62:457–478. doi: 10.1016/j.metabol.2012.08.012. PubMed DOI

Baker K., McGill J., Sharma R., Agarwal A., Sabanegh E. Pregnancy after varicocelectomy: Impact of postoperative motility and DFI. Urology. 2013;81:760–766. doi: 10.1016/j.urology.2012.12.005. PubMed DOI

Biobaku F., Ghanim H., Batra M., Dandona P. Macronutrient-mediated inflammation and oxidative stress: Relevance to insulin resistance, obesity, and atherogenesis. J. Clin. Endocrinol. Metab. 2019;104:6118–6128. doi: 10.1210/jc.2018-01833. PubMed DOI

Tan B.L., Norhaizan M.E., Liew W.P.P. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell. Longev. 2018;2018:9719584. doi: 10.1155/2018/9719584. PubMed DOI PMC

Vincent H.K., Innes K.E., Vincent K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. 2007;9:813–839. doi: 10.1111/j.1463-1326.2007.00692.x. PubMed DOI

Pitteloud N., Mootha V.K., Dwyer A.A., Hardin M., Lee H., Eriksson K.F., Tripathy D., Yialamas M., Groop L., Elahi D., et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28:1636–1642. doi: 10.2337/diacare.28.7.1636. PubMed DOI

Bobjer J., Katrinaki M., Tsatsanis C., Lundberg Giwercman Y., Giwercman A. Negative association between testosterone concentration and inflammatory markers in young men: A nested cross-sectional study. PLoS ONE. 2013;8:e61466. PubMed PMC

Kupelian V., Chiu G.R., Araujo A.B., Williams R.E., Clark R.V., McKinlay J.B. Association of sex hormones and C-reactive protein levels in men. Clin. Endocrinol. 2010;72:527–533. doi: 10.1111/j.1365-2265.2009.03713.x. PubMed DOI PMC

Dhindsa S., Ghanim H., Batra M., Kuhadiya N.D., Abuaysheh S., Sandhu S., Green K., Makdissi A., Hejna J., Chaudhuri A., et al. Insulin resistance and inflammation in hypogonadotropic hypogonadism and their reduction after testosterone replacement in men with type 2 diabetes. Diabetes Care. 2016;39:82–91. doi: 10.2337/dc15-1518. PubMed DOI PMC

Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC

Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative stress in cancer. Cancer Cell. 2020;38:167–197. doi: 10.1016/j.ccell.2020.06.001. PubMed DOI PMC

Fuoco D., Di Tomasso J., Boulos C., Kilgour R.D., Morais J.A., Borod M., Vigano A. Identifying nutritional, functional, and quality of life correlates with male hypogonadism in advanced cancer patients. Ecancermedicalscience. 2015;9:561. doi: 10.3332/ecancer.2015.561. PubMed DOI PMC

Burney B.O., Garcia J.M. Hypogonadism in male cancer patients. J. Cachexia Sarcopenia Muscle. 2012;3:149–155. doi: 10.1007/s13539-012-0065-7. PubMed DOI PMC

Zarotsky V., Huang M.-Y., Carman W., Morgentaler A., Singhal P.K., Coffin D., Jones T.H. Systematic literature review of the epidemiology of nongenetic forms of hypogonadism in adult males. J. Horm. 2014;2014:1–17. doi: 10.1155/2014/190347. PubMed DOI

Ng Tang Fui M., Hoermann R., Zajac J.D., Grossmann M. The effects of testosterone on body composition in obese men are not sustained after cessation of testosterone treatment. Clin. Endocrinol. 2017;87:336–343. doi: 10.1111/cen.13385. PubMed DOI

Caliber M., Saad F. Testosterone therapy for prevention and treatment of obesity in men. Androg. Clin. Res. Ther. 2020;1:40–61. doi: 10.1089/andro.2020.0010. DOI

Cunningham G.R. Testosterone and metabolic syndrome. Asian J. Androl. 2015;17:192–196. doi: 10.4103/1008-682X.148068. PubMed DOI PMC

Li S.Y., Zhao Y.L., Yang Y.F., Wang X., Nie M., Wu X.Y., Mao J.F. Metabolic effects of testosterone replacement therapy in patients with type 2 diabetes mellitus or metabolic syndrome: A meta-analysis. Int. J. Endocrinol. 2020;2020:4732021. doi: 10.1155/2020/4732021. PubMed DOI PMC

Gianatti E.J., Grossmann M. Testosterone deficiency in men with Type 2 diabetes: Pathophysiology and treatment. Diabet. Med. 2020;37:174–186. doi: 10.1111/dme.13977. PubMed DOI

Mancini A., Leone E., Festa R., Grande G., Silvestrini A., De Marinis L., Pontecorvi A., Maira G., Littarru G.P., Meucci E. Effects of testosterone on antioxidant systems in male secondary hypogonadism. J. Androl. 2008;29:622–629. doi: 10.2164/jandrol.107.004838. PubMed DOI

Hwang T.I.S., Liao T.L., Lin J.F., Lin Y.C., Lee S.Y., Lai Y.C., Kao S.H. Low-dose testosterone treatment decreases oxidative damage in TM3 Leydig cells. Asian J. Androl. 2011;13:432–437. doi: 10.1038/aja.2010.159. PubMed DOI PMC

Choobineh H., Sadighi Gilani M.A., Pasalar P., Jahanzad I., Ghorbani R., Hassanzadeh G. The effects of testosterone on oxidative stress markers in mice with spinal cord injuries. Int. J. Fertil. Steril. 2016;10:87–93. PubMed PMC

Makary S., Abdo M., Fekry E. Oxidative stress burden inhibits spermatogenesis in adult male rats: Testosterone protective effect. Can. J. Physiol. Pharmacol. 2018;96:372–381. doi: 10.1139/cjpp-2017-0459. PubMed DOI

Tóthová L., Celec P., Ostatníková D., Okuliarová M., Zeman M., Hodosy J. Effect of exogenous testosterone on oxidative status of the testes in adult male rats. Andrologia. 2013;45:417–423. doi: 10.1111/and.12032. PubMed DOI

Bhasin S., Brito J.P., Cunningham G.R., Hayes F.J., Hodis H.N., Matsumoto A.M., Snyder P.J., Swerdloff R.S., Wu F.C., Yialamas M.A. Testosterone therapy in men with hypogonadism: An endocrine society. J. Clin. Endocrinol. Metab. 2018;103:1715–1744. doi: 10.1210/jc.2018-00229. PubMed DOI

Cui Y., Zong H., Yan H., Zhang Y. The effect of testosterone replacement therapy on prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2014;17:132–143. doi: 10.1038/pcan.2013.60. PubMed DOI

Kardoust Parizi M., Abufaraj M., Fajkovic H., Kimura S., Iwata T., D’Andrea D., Karakiewicz P.I., Shariat S.F. Oncological safety of testosterone replacement therapy in prostate cancer survivors after definitive local therapy: A systematic literature review and meta-analysis. Urol. Oncol. Semin. Orig. Investig. 2019;37:637–646. doi: 10.1016/j.urolonc.2019.06.007. PubMed DOI

Patel A.S., Leong J.Y., Ramos L., Ramasamy R. Testosterone is a contraceptive and should not be used in men who desire fertility. World J. Men’s Health. 2019;37:45. doi: 10.5534/wjmh.180036. PubMed DOI PMC

Ho C.C.K., Tan H.M. Treatment of the hypogonadal infertile male—A review. Sex. Med. Rev. 2013;1:42–49. doi: 10.1002/smrj.4. PubMed DOI

Stokes V.J., Anderson R.A., George J.T. How does obesity affect fertility in men—And what are the treatment options? Clin. Endocrinol. 2015;82:633–638. doi: 10.1111/cen.12591. PubMed DOI

Saisho Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Targets. 2015;15:196–205. doi: 10.2174/1871530315666150316124019. PubMed DOI

De Araújo A.A., Pereira A.D.S.B.F., De Medeiros C.A.C.X., Brito G.A.D.C., Leitão R.F.D.C., Araújo L.D.S., Guedes P.M.M., Hiyari S., Pirih F.Q., De Araújo R.F. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS ONE. 2017;12:e0183506. doi: 10.1371/journal.pone.0183506. PubMed DOI PMC

Esteghamati A., Eskandari D., Mirmiranpour H., Noshad S., Mousavizadeh M., Hedayati M., Nakhjavani M. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: A randomized clinical trial. Clin. Nutr. 2013;32:179–185. doi: 10.1016/j.clnu.2012.08.006. PubMed DOI

Seifarth C., Schehler B., Schneider H.J. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp. Clin. Endocrinol. Diabetes. 2013;121:27–31. doi: 10.1055/s-0032-1327734. PubMed DOI

Faure M., Bertoldo M.J., Khoueiry R., Bongrani A., Brion F., Giulivi C., Dupont J., Froment P. Metformin in reproductive biology. Front. Endocrinol. 2018;9:675. doi: 10.3389/fendo.2018.00675. PubMed DOI PMC

Nasri H., Rafieian-Kopaei M. Metformin: Current knowledge. J. Res. Med. Sci. 2014;19:658–664. PubMed PMC

Desilets A.R., Dhakal-Karki S., Dunican K.C. Role of metformin for weight management in patients without type 2 diabetes. Ann. Pharmacother. 2008;42:817–826. doi: 10.1345/aph.1K656. PubMed DOI

Morgante G., Tosti C., Orvieto R., Musacchio M.C., Piomboni P., De Leo V. Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome. Fertil. Steril. 2011;95:2150–2152. doi: 10.1016/j.fertnstert.2010.12.009. PubMed DOI

Bertoldo M.J., Faure M., Dupont J., Froment P. AMPK: A master energy regulator for gonadal function. Front. Neurosci. 2015;9:235. doi: 10.3389/fnins.2015.00235. PubMed DOI PMC

Abdou H.S., Bergeron F., Tremblay J.J. A cell-autonomous molecular cascade initiated by amp-activated protein kinase represses steroidogenesis. Mol. Cell. Biol. 2014;34:4257–4271. doi: 10.1128/MCB.00734-14. PubMed DOI PMC

Tartarin P., Moison D., Guibert E., Dupont J., Habert R., Rouiller-Fabre V., Frydman N., Pozzi S., Frydman R., Lecureuil C., et al. Metformin exposure affects human and mouse fetal testicular cells. Hum. Reprod. 2012;27:3304–3314. doi: 10.1093/humrep/des264. PubMed DOI

Kim C., Barrett-Connor E., Aroda V.R., Mather K.J., Christophi C.A., Horton E.S., Pi-Sunyer X., Bray G.A., Labrie F., Golden S.H. Testosterone and depressive symptoms among men in the Diabetes Prevention Program. Psychoneuroendocrinology. 2016;72:63–71. doi: 10.1016/j.psyneuen.2016.06.009. PubMed DOI PMC

Hu Y., Ding B., Shen Y., Yan R.N., Li F.F., Sun R., Jing T., Lee K.O., Ma J.H. Rapid changes in serum testosterone in men with newly diagnosed type 2 diabetes with intensive insulin and metformin. Diabetes Care. 2021;44:1059–1061. doi: 10.2337/dc20-1558. PubMed DOI PMC

Al-Kuraishy H.M., Al-Gareeb A.I. Erectile dysfunction and low sex drive in men with type 2 DM: The potential role of diabetic pharmacotherapy. J. Clin. Diagn. Res. 2016;10:FC21–FC26. doi: 10.7860/JCDR/2016/19971.8996. PubMed DOI PMC

Giahi L., Mohammadmoradi S., Javidan A., Sadeghi M.R. Nutritional modifications in male infertility: A systematic review covering 2 decades. Nutr. Rev. 2016;74:118–130. doi: 10.1093/nutrit/nuv059. PubMed DOI PMC

Salas-Huetos A., Bulló M., Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update. 2017;23:371–389. doi: 10.1093/humupd/dmx006. PubMed DOI

Karayiannis D., Kontogianni M.D., Mendorou C., Douka L., Mastrominas M., Yiannakouris N. Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility. Hum. Reprod. 2017;32:215–222. doi: 10.1093/humrep/dew288. PubMed DOI

Di Daniele N., Noce A., Vidiri M.F., Moriconi E., Marrone G., Annicchiarico-Petruzzelli M., D’Urso G., Tesauro M., Rovella V., Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget. 2017;8:8947. doi: 10.18632/oncotarget.13553. PubMed DOI PMC

Key T.J.A., Roe L., Thorogood M., Moore J.W., Clark G.M.G., Wang D.Y. Testosterone, sex hormone-binding globulin, calculated free testosterone, and oestradiol in male vegans and omnivores. Br. J. Nutr. 1990;64:111–119. doi: 10.1079/BJN19900014. PubMed DOI

Håkonsen L., Thulstrup A., Aggerholm A., Olsen J., Bonde J., Andersen C., Bungum M., Ernst E., Hansen M., Ernst E., et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod. Health. 2011;8:24. doi: 10.1186/1742-4755-8-24. PubMed DOI PMC

Jaffar M., Ashraf M. Does weight loss improve fertility with respect to semen parameters—Results from a large cohort study. Int. J. Infertil. Fetal Med. 2017;8:12–17. doi: 10.5005/jp-journals-10016-1141. DOI

Camacho E.M., Huhtaniemi I.T., O’Neill T.W., Finn J.D., Pye S.R., Lee D.M., Tajar A., Bartfai G., Boonen S., Casanueva F.F., et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: Longitudinal results from the European Male Ageing Study. Eur. J. Endocrinol. 2013;168:445–455. doi: 10.1530/EJE-12-0890. PubMed DOI

Kaukua J., Pekkarinen T., Sane T., Mustajoki P. Sex hormones and sexual function in obese men losing weight. Obes. Res. 2003;11:689–694. doi: 10.1038/oby.2003.98. PubMed DOI

Grossmann M. Hypogonadism and male obesity: Focus on unresolved questions. Clin. Endocrinol. 2018;89:11–21. doi: 10.1111/cen.13723. PubMed DOI

Niskanen L., Laaksonen D.E., Punnonen K., Mustajoki P., Kaukua J., Rissanen A. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes. Metab. 2004;6:208–215. doi: 10.1111/j.1462-8902.2004.00335.x. PubMed DOI

Kumagai H., Yoshikawa T., Zempo-Miyaki A., Myoenzono K., Tsujimoto T., Tanaka K., Maeda S. Vigorous physical activity is associated with regular aerobic exercise-induced increased serum testosterone levels in overweight/obese men. Horm. Metab. Res. 2018;50:73–79. doi: 10.1055/s-0043-117497. PubMed DOI

Corona G., Rastrelli G., Monami M., Saad F., Luconi M., Lucchese M., Facchiano E., Sforza A., Forti G., Mannucci E., et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: A systematic review and meta-analysis. Eur. J. Endocrinol. 2013;168:829–843. doi: 10.1530/EJE-12-0955. PubMed DOI

Moatt J.P., Nakagawa S., Lagisz M., Walling C.A. The effect of dietary restriction on reproduction: A meta-analytic perspective. BMC Evol. Biol. 2016;16:199. doi: 10.1186/s12862-016-0768-z. PubMed DOI PMC

Adler M.I., Cassidy E.J., Fricke C., Bonduriansky R. The lifespan-reproduction trade-off under dietary restriction is sex-specific and context-dependent. Exp. Gerontol. 2013;48:539–548. doi: 10.1016/j.exger.2013.03.007. PubMed DOI

Kowaltowski A.J. Caloric restriction and redox state: Does this diet increase or decrease oxidant production? Redox Rep. 2011;16:237–241. doi: 10.1179/1351000211Y.0000000014. PubMed DOI PMC

Wu H., Ballantyne C.M. Metabolic inflammation and insulin resistance in obesity. Circ. Res. 2020:1549–1564. doi: 10.1161/CIRCRESAHA.119.315896. PubMed DOI PMC

Huang C.J., McAllister M.J., Slusher A.L., Webb H.E., Mock J.T., Acevedo E.O. Obesity-related oxidative stress: The impact of physical activity and diet manipulation. Sports Med. Open. 2015;1:32. doi: 10.1186/s40798-015-0031-y. PubMed DOI PMC

Sitzmann B.D., Brown D.I., Garyfallou V.T., Kohama S.G., Mattison J.A., Ingram D.K., Roth G.S., Ottinger M.A., Urbanski H.F. Impact of moderate calorie restriction on testicular morphology and endocrine function in adult rhesus macaques (Macaca mulatta) Age. 2014;36:183–197. doi: 10.1007/s11357-013-9563-6. PubMed DOI PMC

Cangemi R., Friedmann A.J., Holloszy J.O., Fontana L. Long-term effects of calorie restriction on serum sex-hormone concentrations in men. Aging Cell. 2010;9:236–242. doi: 10.1111/j.1474-9726.2010.00553.x. PubMed DOI PMC

Wong H.K., Hoermann R., Grossmann M. Reversible male hypogonadotropic hypogonadism due to energy deficit. Clin. Endocrinol. 2019;91:3–9. doi: 10.1111/cen.13973. PubMed DOI

Schulte D.M., Hahn M., Oberhäuser F., Malchau G., Schubert M., Heppner C., Müller N., Güdelhöfer H., Faust M., Krone W., et al. Caloric restriction increases serum testosterone concentrations in obese male subjects by two distinct mechanisms. Horm. Metab. Res. 2014;46:283–286. doi: 10.1055/s-0033-1358678. PubMed DOI

Calderón B., Galdón A., Calañas A., Peromingo R., Galindo J., García-Moreno F., Rodriguez-Velasco G., Martín-Hidalgo A., Vazquez C., Escobar-Morreale H.F., et al. Effects of bariatric surgery on male obesity-associated secondary hypogonadism: Comparison of laparoscopic gastric bypass with restrictive procedures. Obes. Surg. 2014;24:1686–1692. doi: 10.1007/s11695-014-1233-y. PubMed DOI

Samavat J., Facchiano E., Lucchese M., Forti G., Mannucci E., Maggi M., Luconi M. Hypogonadism as an additional indication for bariatric surgery in male morbid obesity? Eur. J. Endocrinol. 2014;171:555–560. doi: 10.1530/EJE-14-0596. PubMed DOI

Escobar-Morreale H.F., Santacruz E., Luque-Ramírez M., Carretero J.I.B. Prevalence of “obesity-associated gonadal dysfunction” in severely obese men and women and its resolution after bariatric surgery: A systematic review and meta-analysis. Hum. Reprod. Update. 2017;23:390–408. doi: 10.1093/humupd/dmx012. PubMed DOI

Pellitero S., Olaizola I., Alastrue A., Martínez E., Granada M.L., Balibrea J.M., Moreno P., Serra A., Navarro-Díaz M., Romero R., et al. Hypogonadotropic hypogonadism in morbidly obese males is reversed after bariatric surgery. Obes. Surg. 2012;22:1835–1842. doi: 10.1007/s11695-012-0734-9. PubMed DOI

Rao S.R., Kini S., Tamler R. Sex hormones and bariatric surgery in men. Gend. Med. 2011;8:300–311. doi: 10.1016/j.genm.2011.05.007. PubMed DOI

Xu J., Wu Q., Zhang Y., Pei C. Effect of bariatric surgery on male sexual function: A meta-analysis and systematic review. Sex. Med. 2019;7:270–281. doi: 10.1016/j.esxm.2019.06.003. PubMed DOI PMC

Fariello R.M., de Carvalho R.C., Spaine D.M., Andretta R.R., Caetano E.M., Sá G.P.D., Cedenho A.P., Fraietta R. Analysis of the functional aspects of sperm and testicular oxidative stress in individuals undergoing metabolic surgery. Obes. Surg. 2021;31:2887–2895. doi: 10.1007/s11695-021-05350-9. PubMed DOI

Rigon F.A., Ronsoni M.F., Hohl A., van de Sande-Lee S. Effects of bariatric surgery in male obesity-associated hypogonadism. Obes. Surg. 2019;29:2115–2125. doi: 10.1007/s11695-019-03829-0. PubMed DOI

Schmatz R., Bitencourt M.R., Patias L.D., Beck M., Alvarez G.D.C., Zanini D., Gutierres J.M., Diehl L.N., Pereira L.B., Leal C.A., et al. Evaluation of the biochemical, inflammatory and oxidative profile of obese patients given clinical treatment and bariatric surgery. Clin. Chim. Acta. 2017;465:72–79. doi: 10.1016/j.cca.2016.12.012. PubMed DOI

Choromańska B., Myśliwiec P., Łuba M., Wojskowicz P., Myśliwiec H., Choromańska K., Żendzian-Piotrowska M., Dadan J., Zalewska A., Maciejczyk M. Impact of weight loss on the total antioxidant/oxidant potential in patients with morbid obesity—A longitudinal study. Antioxidants. 2020;9:376. doi: 10.3390/antiox9050376. PubMed DOI PMC

Jiang H.W., Zhou Y., Zhou P.Y., Zhang T.Y., Hu J.Y., Bai X.T. Protective effects of bariatric surgery on kidney functions by inhibiting oxidative stress responses through activating PPARα in rats with diabetes. Front. Physiol. 2021;12:662666. doi: 10.3389/fphys.2021.662666. PubMed DOI PMC

Fejfer K., Buczko P., Niczyporuk M., Ładny J.R., Hady H.R., Knaś M., Waszkiel D., Klimiuk A., Zalewska A., Maciejczyk M. Oxidative modification of biomolecules in the nonstimulated and stimulated saliva of patients with morbid obesity treated with bariatric surgery. BioMed Res. Int. 2017;2017:4923769. doi: 10.1155/2017/4923769. PubMed DOI PMC

Ferraz-Bannitz R., Welendorf C.R., Coelho P.O., Salgado W., Nonino C.B., Beraldo R.A., Foss-Freitas M.C. Bariatric surgery can acutely modulate ER-stress and inflammation on subcutaneous adipose tissue in non-diabetic patients with obesity. Diabetol. Metab. Syndr. 2021;13:19. doi: 10.1186/s13098-021-00623-w. PubMed DOI PMC

Da Silva V.R.G., Moreira E.A.M., Wilhelm-Filho D., De Miranda J.X., Benincá J.P., Vigil S.V.G., Moratelli A.M.B., Garlet T.R., De Souza Meirelles M.S., Vannucchi H., et al. Proinflammatory and oxidative stress markers in patients submitted to Roux-en-Y gastric bypass after 1 year of follow-up. Eur. J. Clin. Nutr. 2012;66:891–899. doi: 10.1038/ejcn.2012.17. PubMed DOI

Peng C., Wang X., Chen J., Jiao R., Wang L., Li Y.M., Zuo Y., Liu Y., Lei L., Ma K.Y., et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014;2014:831841. doi: 10.1155/2014/831841. PubMed DOI PMC

Akbari M., Ostadmohammadi V., Tabrizi R., Mobini M., Lankarani K.B., Moosazadeh M., Heydari S.T., Chamani M., Kolahdooz F., Asemi Z. The effects of alpha-lipoic acid supplementation on inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. 2018;15:39. doi: 10.1186/s12986-018-0274-y. PubMed DOI PMC

Fan L., Feng Y., Chen G.C., Qin L.Q., Fu C.L., Chen L.H. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2017;119:128–136. doi: 10.1016/j.phrs.2017.01.032. PubMed DOI

Brie D., Sahebkar A., Penson P.E., Dinca M., Ursoniu S., Serban M.C., Zanchetti A., Howard G., Ahmed A., Aronow W.S., et al. Effects of pentoxifylline on inflammatorymarkers and blood pressure: A systematic reviewandmeta-analysis of randomized controlled trials. J. Hypertens. 2016;34:2318–2329. doi: 10.1097/HJH.0000000000001086. PubMed DOI

Martins Gregório B., Benchimol De Souza D., Amorim de Morais Nascimento F., Matta L., Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr. Pharm. Des. 2016;22:859–869. doi: 10.2174/1381612822666151209152352. PubMed DOI

Kooti W., Farokhipour M., Asadzadeh Z., Ashtary-Larky D., Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician. 2016;8:1832–1842. doi: 10.19082/1832. PubMed DOI PMC

Alizadeh F., Javadi M., Karami A.A., Gholaminejad F., Kavianpour M., Haghighian H.K. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phyther. Res. 2018;32:514–521. doi: 10.1002/ptr.5998. PubMed DOI

Qin F., Shen T., Cao H., Qian J., Zou D., Ye M., Pei H. CeO2NPs relieve radiofrequency radiation, improve testosterone synthesis, and clock gene expression in Leydig cells by enhancing antioxidation. Int. J. Nanomed. 2019;14:4601. doi: 10.2147/IJN.S206561. PubMed DOI PMC

Yahyavy S., Valizadeh A., Saki G., Khorsandi L. Taurine ameliorates cytotoxic effects of Di(2-ethylhexyl) phthalate on Leydig cells. Andrologia. 2021;53:e14146. doi: 10.1111/and.14146. PubMed DOI

Opuwari C.S., Matshipi M.N., Phaahla M.K., Setumo M.A., Moraswi R.T., Zitha A.A., Offor U., Choma S.S.R. Androgenic effect of aqueous leaf extract of Moringa oleifera on Leydig TM3 cells in vitro. Andrologia. 2020;52:e13825. doi: 10.1111/and.13825. PubMed DOI

Jambor T., Arvay J., Ivanisova E., Tvrda E., Kovacik A., Greifova H., Lukac N. Investigation of the properties and effects of Salvia Officinalis L. on the viability, steroidogenesis and reactive oxygen species (ROS) production in TM3 leydig cells in vitro. Physiol. Res. 2020;69:661–673. doi: 10.33549/physiolres.934457. PubMed DOI PMC

Wang J.Y., Lee Y.J., Chou M.C., Chang R., Chiu C.H., Liang Y.J., Wu L.S. Astaxanthin protects steroidogenesis from hydrogen peroxide-induced oxidative stress in mouse Leydig cells. Mar. Drugs. 2015;13:1375–1388. doi: 10.3390/md13031375. PubMed DOI PMC

Deng S.L., Zhang B.L., Reiter R.J., Liu Y.X. Melatonin ameliorates inflammation and oxidative stress by suppressing the P38MAPK signaling pathway in LPS-induced sheep orchitis. Antioxidants. 2020;9:1277. doi: 10.3390/antiox9121277. PubMed DOI PMC

Greifová H., Jambor T., Tokárová K., Speváková I., Knížatová N., Lukáč N. Resveratrol attenuates hydrogen peroxide-induced oxidative stress in TM3 Leydig cells in vitro. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2020;55:585–595. doi: 10.1080/10934529.2020.1717899. PubMed DOI

Ma J., Yang H., Liu L., Wan Y., Wang F. Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway. Theriogenology. 2021;173:83–92. doi: 10.1016/j.theriogenology.2021.07.011. PubMed DOI

Banerjee B., Chakraborty S., Chakraborty P., Ghosh D., Jana K. Protective effect of resveratrol on benzo(a)pyrene induced dysfunctions of steroidogenesis and steroidogenic acute regulatory gene expression in Leydig cells. Front. Endocrinol. 2019;10:272. doi: 10.3389/fendo.2019.00272. PubMed DOI PMC

Sun J., Wang H., Liu B., Shi W., Shi J., Zhang Z., Xing J. Rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways. Biomed. Pharmacother. 2017;88:500–506. doi: 10.1016/j.biopha.2017.01.066. PubMed DOI

Hu J., Yu Q., Zhao F., Ji J., Jiang Z., Chen X., Gao P., Ren Y., Shao S., Zhang L., et al. Protection of quercetin against triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells. Chem. Biol. Interact. 2015;240:38–46. doi: 10.1016/j.cbi.2015.08.004. PubMed DOI

Chang M.S., Kim W.N., Yang W.M., Kim H.Y., Oh J.H., Park S.K. Cytoprotective effects of Morinda officinalis against hydrogen peroxide-induced oxidative stress in Leydig TM3 cells. Asian J. Androl. 2008;10:667–674. doi: 10.1111/j.1745-7262.2008.00414.x. PubMed DOI

Murugesan P., Muthusamy T., Balasubramanian K., Arunakaran J. Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)-Induced oxidative damage in Leydig cells. Free Radic. Res. 2005;39:1259–1272. doi: 10.1080/10715760500308154. PubMed DOI

Bashandy S.A.E.M., Omara E.A.A., Ebaid H., Amin M.M., Soliman M.S. Role of zinc as an antioxidant and anti-inflammatory to relieve cadmium oxidative stress induced testicular damage in rats. Asian Pac. J. Trop. Biomed. 2016;6:1056–1064. doi: 10.1016/j.apjtb.2016.08.016. DOI

Aggarwal A., Misro M.M., Maheshwari A., Sehgal N. Differential modulation of apoptotic gene expression by N-acetyl-l-cysteine in Leydig cells stimulated persistently with hCG in vivo. Mol. Cell. Endocrinol. 2012;348:155–164. doi: 10.1016/j.mce.2011.08.002. PubMed DOI

Gao T., Lin M., Shao B., Zhou Q., Wang Y., Chen X., Zhao D., Dai X., Shen C., Cheng H., et al. BMI1 promotes steroidogenesis through maintaining redox homeostasis in mouse MLTC-1 and primary Leydig cells. Cell Cycle. 2020;19:1884–1898. doi: 10.1080/15384101.2020.1779471. PubMed DOI PMC

Altındağ F., Meydan İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia. 2021;53:e14189. doi: 10.1111/and.14189. PubMed DOI

Elumalai P., Krishnamoorthy G., Selvakumar K., Arunkumar R., Venkataraman P., Arunakaran J. Studies on the protective role of lycopene against polychlorinated biphenyls (Aroclor 1254)-induced changes in StAR protein and cytochrome P450 scc enzyme expression on Leydig cells of adult rats. Reprod. Toxicol. 2009;27:41–45. doi: 10.1016/j.reprotox.2008.11.053. PubMed DOI

Girish B.P., Reddy P.S. Forskolin ameliorates mancozeb-induced testicular and epididymal toxicity in Wistar rats by reducing oxidative toxicity and by stimulating steroidogenesis. J. Biochem. Mol. Toxicol. 2018;32:e22026. doi: 10.1002/jbt.22026. PubMed DOI

Wang H.J., Wang Q., Lv Z.M., Wang C.L., Li C.P., Rong Y.L. Resveratrol appears to protect against oxidative stress and steroidogenesis collapse in mice fed high-calorie and high-cholesterol diet. Andrologia. 2015;47:59–65. doi: 10.1111/and.12231. PubMed DOI

Mosbah R., Yousef M.I., Maranghi F., Mantovani A. Protective role of Nigella sativa oil against reproductive toxicity, hormonal alterations, and oxidative damage induced by chlorpyrifos in male rats. Toxicol. Ind. Health. 2016;32:1266–1277. doi: 10.1177/0748233714554675. PubMed DOI

Jeong H.C., Jeon S.H., Guan Qun Z., Bashraheel F., Choi S.W., Kim S.J., Bae W.J., Cho H.J., Ha U.S., Hong S.H., et al. Lycium chinense Mill improves hypogonadism via anti-oxidative stress and anti-apoptotic effect in old aged rat model. Aging Male. 2020;23:287–296. doi: 10.1080/13685538.2018.1498079. PubMed DOI

Alotaibi B., El-Masry T.A., Tousson E., Alarfaj S.J., Saleh A. Therapeutic effects of rocket seeds (Eruca sativa L.) against testicular toxicity and oxidative stress caused by silver nanoparticles injection in rats. Environ. Toxicol. 2020;35:952–960. PubMed

Abd H.H., Ahmed H.A., Mutar T.F. Moringa oleifera leaves extract modulates toxicity, sperms alterations, oxidative stress, and testicular damage induced by tramadol in male rats. Toxicol. Res. 2020;9:101–106. doi: 10.1093/toxres/tfaa009. PubMed DOI PMC

Karna K.K., Choi B.R., Kim M.J., Kim H.K., Park J.K. The effect of Schisandra chinensis baillon on crosstalk between oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in testes of varicocele-induced SD rat. Int. J. Mol. Sci. 2019;20:5785. doi: 10.3390/ijms20225785. PubMed DOI PMC

Choi S.W., Jeon S.H., Kwon E.B., Zhu G.Q., Lee K.W., Choi J.B., Jeong H.C., Kim K.S., Bae S.R., Bae W.J., et al. Effect of Korean herbal formula (modified Ojayeonjonghwan) on androgen receptor expression in an aging rat model of late onset hypogonadism. World J. Men’s Health. 2019;37:105–112. doi: 10.5534/wjmh.180051. PubMed DOI PMC

Bae W.J., Zhu G.Q., Choi S.W., Jeong H.C., Bashraheel F., Kim K.S., Kim S.J., Cho H.J., Ha U.S., Hong S.H., et al. Antioxidant and antifibrotic effect of a herbal formulation in vitro and in the experimental andropause via nrf2/ho-1 signaling pathway. Oxid. Med. Cell. Longev. 2017;2017:6024839. doi: 10.1155/2017/6024839. PubMed DOI PMC

Zhang K., Fu L., An Q., Hu W., Liu J., Tang X., Ding Y., Lu W., Liang X., Shang X., et al. Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complement. Med. Ther. 2020;20:42. doi: 10.1186/s12906-019-2799-7. PubMed DOI PMC

Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., et al. The achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 2015;14:644–658. doi: 10.1111/acel.12344. PubMed DOI PMC

Dookun E., Passos J.F., Arthur H.M., Richardson G.D. Therapeutic potential of senolytics in cardiovascular disease. Cardiovasc. Drugs Ther. 2020:1–10. doi: 10.1007/s10557-020-07075-w. PubMed DOI PMC

Kaur A., Macip S., Stover C.M. An appraisal on the value of using nutraceutical based senolytics and senostatics in aging. Front. Cell Dev. Biol. 2020;8:218. doi: 10.3389/fcell.2020.00218. PubMed DOI PMC

Li W., Qin L., Feng R., Hu G., Sun H., He Y., Zhang R. Emerging senolytic agents derived from natural products. Mech. Ageing Dev. 2019;181:1–6. doi: 10.1016/j.mad.2019.05.001. PubMed DOI

Zhang C., Xie Y., Chen H., Lv L., Yao J., Zhang M., Xia K., Feng X., Li Y., Liang X., et al. FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging. 2020;12:1272–1284. doi: 10.18632/aging.102682. PubMed DOI PMC

Leisegang K. Herbal Medicine in Andrology. Academic Press; Cambridge, MA, USA: 2021. Herbal pharmacognosy: An introduction; pp. 17–26.

Pérez-Torres I., Castrejón-Téllez V., Soto M.E., Rubio-Ruiz M.E., Manzano-Pech L., Guarner-Lans V. Oxidative stress, plant natural antioxidants, and obesity. Int. J. Mol. Sci. 2021;22:1786. doi: 10.3390/ijms22041786. PubMed DOI PMC

Mitjavila M.T., Moreno J.J. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol. 2012;84:1113–1122. doi: 10.1016/j.bcp.2012.07.017. PubMed DOI

Nazarian-Samani Z., Sewell R.D.E., Lorigooini Z., Rafieian-Kopaei M. Medicinal plants with multiple effects on diabetes mellitus and its complications: A systematic review. Curr. Diab. Rep. 2018;18:72. doi: 10.1007/s11892-018-1042-0. PubMed DOI

Karunakaran U., Park K.G. A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab. J. 2013;37:106–112. doi: 10.4093/dmj.2013.37.2.106. PubMed DOI PMC

Alahmadi B. Effect of herbal medicine on fertility potential in experimental animals—An update review. Mater. Socio-Med. 2020;32:140. doi: 10.5455/msm.2020.32.140-147. PubMed DOI PMC

Agarwal A., Majzoub A., Baskaran S., Selvam M.K.P., Cho C.L.C.L., Henkel R., Finelli R., Leisegang K., Sengupta P., Barbarosie C., et al. Sperm DNA fragmentation: A new guideline for clinicians. World J. Men’s Health. 2020;38:412–471. doi: 10.5534/wjmh.200128. PubMed DOI PMC

Smith S.J., Lopresti A.L., Teo S.Y.M., Fairchild T.J. Examining the effects of herbs on testosterone concentrations in men: A systematic review. Adv. Nutr. 2021;12:744–765. doi: 10.1093/advances/nmaa134. PubMed DOI PMC

Leisegang K., Finelli R. Alternative medicine and herbal remedies in the treatment of erectile dysfunction: A systematic review. Arab J. Urol. 2021;19:323–339. doi: 10.1080/2090598X.2021.1926753. PubMed DOI PMC

Martin L.J., Touaibia M. Improvement of testicular steroidogenesis using flavonoids and isoflavonoids for prevention of late-onset male hypogonadism. Antioxidants. 2020;9:237. doi: 10.3390/antiox9030237. PubMed DOI PMC

Halliwell B. The antioxidant paradox: Less paradoxical now? Br. J. Clin. Pharmacol. 2013;75:637–644. doi: 10.1111/j.1365-2125.2012.04272.x. PubMed DOI PMC

Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC

Henkel R., Sandhu I.S., Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia. 2019;51:e13162. doi: 10.1111/and.13162. PubMed DOI

Mentor S., Fisher D. Aggressive Antioxidant Reductive Stress Impairs Brain Endothelial Cell Angiogenesis and Blood Brain Barrier Function. Curr. Neurovasc. Res. 2016;14:71–81. doi: 10.2174/1567202613666161129113950. PubMed DOI

Singh F., Charles A.L., Schlagowski A.I., Bouitbir J., Bonifacio A., Piquard F., Krähenbühl S., Geny B., Zoll J. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim. Biophys. Acta Mol. Cell Res. 2015;1853:1574–1585. doi: 10.1016/j.bbamcr.2015.03.006. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Environmental and Genetic Traffic in the Journey from Sperm to Offspring

. 2023 Dec 07 ; 13 (12) : . [epub] 20231207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...