IncobotulinumtoxinA for the treatment of lower-limb spasticity in children and adolescents with cerebral palsy: A phase 3 study

. 2021 ; 14 (2) : 183-197.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu klinické zkoušky, fáze III, časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid34092664

PURPOSE: Investigate the efficacy and safety of multipattern incobotulinumtoxinA injections in children/adolescents with lower-limb cerebral palsy (CP)-related spasticity. METHODS: Phase 3 double-blind study in children/adolescents (Gross Motor Function Classification System - Expanded and Revised I-V) with unilateral or bilateral spastic CP and Ashworth Scale (AS) plantar flexor (PF) scores ⩾ 2 randomized (1:1:2) to incobotulinumtoxinA (4, 12, 16 U/kg, maximum 100, 300, 400 U, respectively) for two 12- to 36-week injection cycles. Two clinical patterns were treated. Pes equinus (bilateral or unilateral) was mandatory; if unilateral, treatment included flexed knee or adducted thigh. ENDPOINTS: Primary: AS-PF change from baseline to 4 weeks; Coprimary: investigator-rated Global Impression of Change Scale (GICS)-PF at 4 weeks; Secondary: investigator's, patient's, and parent's/caregiver's GICS, Gross Motor Function Measure-66 (GMFM-66). RESULTS: Among 311 patients, AS-PF and AS scores in all treated clinical patterns improved from baseline to 4-weeks post-injection and cumulatively across injection cycles. GICS-PF and GICS scores confirmed global spasticity improvements. GMFM-66 scores indicated better motor function. No significant differences between doses were evident. Treatment was well-tolerated, with no unexpected treatment-related adverse events or neutralising antibody development. CONCLUSION: Children/adolescents with lower-limb spasticity experienced multipattern benefits from incobotulinumtoxinA, which was safe and well-tolerated in doses up to 16 U/kg, maximum 400 U.

Erratum v

PubMed

Zobrazit více v PubMed

Pavone V, Testa G, Restivo DA, Cannavò L, Condorelli G, Portinaro NM, et al. Botulinum toxin treatment for limb spasticity in childhood cerebral palsy. Front Pharmacol. 2016; 7: 29. doi: 10.3389/fphar.2016.00029. PubMed DOI PMC

Sadowska M, Sarecka-Hujar, Kopyta I. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat. 2020; 16: 1505-1518. doi: 10.2147/NDT.S235165. PubMed DOI PMC

Centers for Disease Control and Prevention. Cerebral palsy. Accessed March 14, 2021. Available from: https://www.cdc.gov/ncbddd/cp/facts.html.

Surveillance of Cerebral Palsy in Europe. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol. 2000; 42(12): 816-824. doi: 10.1017/s0012162200001511. PubMed DOI

Hagglund G, Wagner OP. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008; 9: 150-159. doi: 10.1186/1471-2474-9-150. PubMed DOI PMC

Lampe R, Mitternacht J. Research on the performance of the spastic calf muscle of young adults with cerebral palsy. J Clin Med Res. 2011; 3: 8-16. doi: 10.4021/jocmr483w. PubMed DOI PMC

Horsch A, Götze M, Geisbüsch A, Beckmann N, Tsitlakidis S, Berrsche G, et al. Prevalence and classification of equinus foot in bilateral spastic cerebral palsy. World J Pediatr. 2019; 15: 276-280. doi: 10.1007/s12519-019-00238-2. PubMed DOI

Rethlefsen SA, Blumstein G, Kay RM, Dorey F, Wren TAL. Prevalence of specific gait abnormalities in children with cerebral palsy revisited: Influence of age, prior surgery, and gross motor function classification system level. Dev Med Child Neurol. 2017; 59: 79-88. doi: 10.1111/dmcn.13205. PubMed DOI

Colver A, Rapp M, Eisemann N, Ehlinger V, Thyen U, Dickinson HO, et al. Self-reported quality of life of adolescents with cerebral palsy: A cross-sectional and longitudinal analysis. Lancet. 2015; 385: 705-716. doi: 10.1016/S0140-6736(14)61229-0. PubMed DOI PMC

Park EY. Path analysis of strength, spasticity, gross motor function, and health-related quality of life in children with spastic cerebral palsy. Health Qual Life Outcomes. 2018; 16: 70-76. doi: 10.1186/s12955-018-0891-1. PubMed DOI PMC

Akodu AK, Oluwale OAT, Adegoke ZO, Ahmed UA, Akinola TO. Relationship between spasticity and health related quality of life in individuals with cerebral palsy. Nig Q J Hosp Med. 2012; 22: 99-102. PubMed

Öhrvall AM, Eliasson AC, Löwing K, Ödman P, Krumlinde-Sundholm L. Self-care and mobility skills in children with cerebral palsy, related to their manual ability and gross motor function classifications. Dev Med Child Neurol. 2010; 52: 1048-1055. doi: 10.1111/j.1469-8749.2010.03764.x. PubMed DOI

Geister TL, Quintanar-Solares M, Martin M, Aufhammer S, Asmus F. Qualitative development of the ’Questionnaire on Pain caused by Spasticity (QPS),’ a pediatric patient-reported outcome for spasticity-related pain in cerebral palsy. Qual Life Res. 2014; 23: 887-896. doi: 10.1007/s11136-013-0526-2. PubMed DOI PMC

Poirot I, Laudy V, Rabilloud M, Roche S, Ginhoux T, Kassaï B, et al. Prevalence of pain in 240 non-ambulatory children with severe cerebral palsy. Ann Phys Rehabil Med. 2017; 60: 371-375. doi: 10.1016/j.rehab.2017.03.011. PubMed DOI

Penner M, Xie WY, Binepal N, Switzer L, Fehlings D. Characteristics of pain in children and youth with cerebral palsy. Pediatrics. 2013; 132: E407-E413. doi: 10.1542/peds.2013-0224. PubMed DOI

Hutchinson R, Graham HK. Management of spasticity in children. In: Barnes MP, Johnson GR, editors. Upper motor neurone syndrome and spasticity. Clinical management and neurophysiology. 2nd ed. Cambridge, MA: Cambridge University Press. 2008; 214-234.

Koman LA, Smith BP, Balkrishnan R. Spasticity associated with cerebral palsy in children: Guidelines for the use of botulinum A toxin. Pediatr Drugs. 2003; 5: 11-23. doi: 10.2165/00128072-200305010-00002. PubMed DOI

Li S, Francisco GE. The use of botulinum toxin for treatment of spasticity. Handb Exp Pharmacol. 2021; 263: 127-146. doi: 10.1007/164_2019_315. PubMed DOI

Satila H. Over 25 years of pediatric Botulinum Toxin treatments: What have we learned from injection techniques, doses, dilutions, and recovery of repeated injections? Toxins. 2020; 12: 440-460. doi: 10.3390/toxins12070440. PubMed DOI PMC

Fehlings D, Novak I, Berweck S, Hoare B, Stott NS, Russo RN, et al. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hypertonicity: International consensus statement. Eur J Neurol. 2010; 17: 38-56. doi: 10.1111/j.1468-1331.2010.03127.x. PubMed DOI

Love SC, Novak I, Kentish M, Desloovere K, Heinen F, Molenaers G, et al. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: International consensus statement. Eur J Neurol. 2010; 17: 9-37. doi: 10.1111/j.1468-1331.2010.03126.x. PubMed DOI

Delgado MR, Hirtz D, Aisen M, Ashwal S, Fehlings DL, McLaughlin J, et al. Practice parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010; 74: 336-343. doi: 10.1212/WNL.0b013e3181cbcd2f. PubMed DOI PMC

Heinen F, Desloovere K, Schroeder AS, Berweck S, Borggraefe I, van Campenhout A, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010; 14: 45-66. doi: 10.1016/j.ejpn.2009.09.005. PubMed DOI

National Institute for Health and Care Excellence. Spasticity in under 19s: Management. Clinical guideline [CG145]. Published 25 July 2012 [cited 2021 03 11]. Available from: www.nice.org.uk/guidance/cg145.

Multani I, Manji J, Hastings-Ison T, Khot A, Graham K. Botulinum toxin in the management of children with cerebral palsy. Pediatr Drugs. 2019; 21: 261-281. doi: 10.1007/s40272-019-00344-8. PubMed DOI PMC

Botox

Dysport 500U. Summary of product characteristics. Cambridge, MA: Ipsen Biopharm Ltd, 2017 [cited 2021 Jan 19]. Available from: https://www.medicines.org.uk/emc/medicine/32114.

Merz Pharma UK Ltd. Xeomin 200 units powder for solution for injection. Herts: Merz Pharma UK Ltd, 2020 [cited 2021 Jan 25]. Available from: https://www.medicines.org.uk/emc/product/2162/smpc.

BOTOX (onabotulinumtoxinA) for injection, for intramuscular, intradetrusor, or intradermal use. Highlights of prescribing information – Botox®. Dublin: Allergan Inc., 2019 [cited 2021 Feb 23]. Available from: https://media.allergan.com/actavis/actavis/media/allergan-pdf-documents/product-prescribing/20190620-BOTOX-100-and-200-Units-v3-0USPI1145-v2-0MG1145.pdf.

DYSPORT (abobotulinumtoxinA) for injection, for intramuscular use. Highlights of prescribing information. Cambridge, MA: Ipsen Biopharm Ltd, 2020 [cited 2021 Feb 4]. Available from: https://www.ipsen.com/websites/Ipsen_Online/wp-content/uploads/2020/07/10002305/DYS-US-004998_Dysport-PI-July-2020.pdf.

XEOMIN (incobotulinumtoxinA) for injection, for intramuscular or intraglandular use: US prescribing information. Raleigh, NC: Merz Pharmaceuticals LLC, 2020 [cited 2021 Feb 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125360s078lbl.pdf.

Ashworth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964; 192: 540-542. PubMed

Elovic EP, Munin MC, Kanovský P, Hanschmann A, Hiersemenzel R, Marciniak C. Randomized, placebo-controlled trial of incobotulinumtoxina for upper-limb post-stroke spasticity. Muscle Nerve. 2016; 53: 415-421. doi: 10.1002/mus.24776. PubMed DOI PMC

Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: Evidence of reliability and validity. Phys Ther. 2000; 80: 873-885. PubMed

Harvey A, Robin J, Morris ME, Graham HK, Baker R. A systematic review of measures of activity limitation for children with cerebral palsy. Dev Med Child Neurol. 2008; 50: 190-198. doi: 10.1111/j.1469-8749.2008.02027.x. PubMed DOI

Alotaibi M, Long T, Kennedy E, Bavishi S. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): A literature review. Disabil Rehabil. 2014; 36: 617-627. doi: 10.3109/09638288.2013.805820. PubMed DOI

Rosenbaum PL, Walter SD, Hanna SE, Palisano RJ, Russell DJ, Raina P, et al. Prognosis for gross motor function in cerebral palsy: Creation of motor development curves. JAMA. 2002; 288: 1357-1363. doi: 10.1001/jama.288.11.1357. PubMed DOI

Delgado MR, Tilton A, Russman B, Benavides O, Bonikowski M, Carranza J, et al. AbobotulinumtoxinA for equinus foot deformity in cerebral palsy: A randomized controlled trial. Pediatrics. 2016; 137: e20152830. doi: 10.1542/peds.2015-2830. PubMed DOI

Kim H, Meilahn J, Liu C, Chambers HG, McCusker E, Dimitrova R. Efficacy and safety of onabotulinumtoxinA for the treatment of pediatric lower limb spasticity: Primary results. Neurology. 2018; 90(15 Suppl): S29.007. PubMed PMC

Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987; 67: 206-207. doi: 10.1093/ptj/67.2.206. PubMed DOI

Moccia M, Frau J, Carotenuto A, Butera C, Coghe G, Barbero P, et al. Botulinum toxin for the management of spasticity in multiple sclerosis: The Italian botulinum toxin network study. Neurol Sci. 2020; 41: 2781-2792. doi: 10.1007/s10072-020-04392-8. PubMed DOI

Palazón-García R, Alcobendas-Maestro M, Esclarin-de Ruz A, Benavente-Valdepeñas AM. Treatment of spasticity in spinal cord injury with botulinum toxin. J Spinal Cord Med. 2019; 42: 281-287. doi: 10.1080/10790268.2018.1479053. PubMed DOI PMC

Wein T, Esquenazi A, Jost WH, Ward AB, Pan G, Dimitrova R. OnabotulinumtoxinA for the treatment of poststroke distal lower limb spasticity: A randomized trial. PM R. 2018; 10: 693-703. doi: 10.1016/j.pmrj.2017.12.006. PubMed DOI

Choi JY, Kim SK, Park ES. The effect of botulinum toxin injections on gross motor function for lower limb spasticity in children with cerebral palsy. Toxins (Basel). 2019; 11: 651-664. doi: 10.3390/toxins11110651. PubMed DOI PMC

Wohlfarth K, Müller C, Sassin I, Comes G, Grafe S. Neurophysiological double-blind trial of a botulinum neurotoxin type A free of complexing proteins. Clin Neuropharmacol. 2007; 30: 86-94. doi: 10.1097/01.WNF.0000240951.18821.50. PubMed DOI

Dabrowski E, Chambers HG, Gaebler-Spira D, Banach M, Kanovsky P, Dersch H, et al. Efficacy and safety of incobotulinumtoxinA for upper- or combined upper- and lower-limb spasticity in children and adolescents with cerebral palsy: Results of the phase 3 XARA study. Toxicon. 2021; 190: S14-S15. doi: 10.1016/j.toxicon.2020.11.369. DOI

Leon-Valenzuela A, Palacios JS, Del Pino Algarrada R. IncobotulinumtoxinA for the treatment of spasticity in children with cerebral palsy – a retrospective case series focusing on dosing and tolerability. BMC Neurol. 2020; 20: 126. doi: 10.1186/s12883-020-01702-7. PubMed DOI PMC

Albrecht P, Jansen A, Lee JI, Moll M, Ringelstein M, Rosenthal D, et al. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology. 2019; 92: e48-e54. doi: 10.1212/WNL.0000000000006688. PubMed DOI

Frevert J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D. 2015; 15: 1-9. doi: 10.1007/s40268-014-0077-1. PubMed DOI PMC

Hefter H, Brauns R, Ürer B, Rosenthal D, Albrecht P. Effective long-term treatment with incobotulinumtoxin (Xeomin®) without neutralizing antibody induction: A monocentric, cross-sectional study. J Neurol. 2020; 267: 1340-1347. doi: 10.1007/s00415-019-09681-7. PubMed DOI PMC

Heinen F, Kanovsky P, Schraeder S, Chambers HG, Dabrowski E, Geister TL, et al. Pooled efficacy analysis of incobotulinumtoxinA in the multipattern treatment of upper- and lower-limb spasticity in children and adolescents with cerebral palsy. Toxicon. 2021; 190: S32-S33. doi: 10.1016/j.toxicon.2020.11.405. PubMed DOI PMC

Banach M, Kanovsky P, Schroeder AS, Chambers HG, Dabrowski E, Geister TL, et al. Safety of incobotulinumtoxinA in multipattern treatment of upper- and lower-limb spasticity in children/adolescents with cerebral palsy: A pooled analysis of 3 large phase 3 studies. Toxicon. 2021; 190: S7. doi: 10.1016/j.toxicon.2020.11.353. PubMed DOI PMC

Kanovsky P, Gaebler-Spira D, Schroeder AS, Chambers HG, Dabrowski E, Geister TL, et al. Pooled efficacy and safety analysis of incobotulinumtoxinA in the treatment of upper- and lower-limb spasticity in children with severe cerebral palsy (GMFCS level IV and V). Toxicon. 2021; 190: S36. doi: 10.1016/j.toxicon.2020.11.414. DOI

Hastings-Ison T, Blackburn C, Rawicki B, Fahey M, Simpson P, Baker R, et al. Injection frequency of botulinum toxin A for spastic equinus: A randomized clinical trial. Dev Med Child Neurol. 2016; 58: 750-757. doi: 10.1111/dmcn.12962. PubMed DOI

Kanovský P, Bares M, Severa S, Richardson A; Dysport Paediatric Limb Spasticity Study Group. Long-term efficacy and tolerability of 4-monthly versus yearly botulinum toxin type A treatment for lower-limb spasticity in children with cerebral palsy. Dev Med Child Neurol. 2009; 51: 436-445. doi: 10.1111/j.1469-8749.2008.03264.x. PubMed DOI

Baker R, Jasinski M, Maciag-Tymecka I, Michalowska-Mrozek J, Bonikowski, Carr L, et al. Botulinum toxin treatment of spasticity in diplegic cerebral palsy: A randomized, double-blind, placebo-controlled, dose-ranging study. Dev Med Child Neurol. 2002; 44: 666-675. doi: 10.1017/s0012162201002730. PubMed DOI

Chang HJ, Hong BY, Lee SJ, Lee S, Park JH, Kwon JY. Efficacy and safety of letibotulinum toxin A for the treatment of dynamic equinus foot deformity in children with cerebral palsy: A randomized controlled trial. Toxins (Basel). 2017; 9: 252. doi: 10.3390/toxins9080252. PubMed DOI PMC

Kim K, Shin HI, Kwon BS, Kim SJ, Jung IY, Bang MS. Neuronox versus BOTOX for spastic equinus gait in children with cerebral palsy: A randomized, double-blinded, controlled multicentre clinical trial. Dev Med Child Neurol. 2011; 53: 239-244. doi: 10.1111/j.1469-8749.2010.03830.x. PubMed DOI

Oeffinger D, Bagley A, Rogers S, Gorton G, Kryscio R, Abel M, et al. Outcome tools used for ambulatory children with cerebral palsy: Responsiveness and minimum clinically important differences. Dev Med Child Neurol. 2008; 50: 918-925. doi: 10.1111/j.1469-8749.2008.03150.x. PubMed DOI PMC

Katusic A, Alimovic S. The relationship between spasticity and gross motor capability in nonambulatory children with spastic cerebral palsy. Int J Rehabil Res. 2013; 36: 205-210. doi: 10.1097/MRR.0b013e32835d0b11. PubMed DOI

Ross SA, Engsberg JR. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Arch Phys Med Rehabil. 2007; 88: 1114-1120. doi: 10.1016/j.apmr.2007.06.011. PubMed DOI

Noble JJ, Gough M, Shortland AP. Selective motor control and gross motor function in bilateral spastic cerebral palsy. Dev Med Child Neurol. 2019; 61: 57-61. doi: 10.1111/dmcn.14024. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...