Machine learning models accurately predict clades of proteocephalidean tapeworms (Onchoproteocephalidea) based on host and biogeographical data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2020/05412-9
Fundação de Amparo à Pesquisa do Estado de São Paulo
2021/12593-2
Fundação de Amparo à Pesquisa do Estado de São Paulo
2023/00714-5
Fundação de Amparo à Pesquisa do Estado de São Paulo
135/2012
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
PubMed
40047286
PubMed Central
PMC12065121
DOI
10.1111/cla.12610
Knihovny.cz E-zdroje
- MeSH
- Cestoda * genetika klasifikace MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- strojové učení * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Proteocephalids are a cosmopolitan and diverse group of tapeworms (Cestoda) that have colonized vertebrate hosts in freshwater and terrestrial environments. Despite the ubiquity of the group, key macroevolutionary processes that have driven the group's evolution have yet to be identified. Here, we review the phylogenetic relationships of proteocephalid tapeworms using publicly available (671) and newly generated (91) nucleotide sequences of the nuclear RNA28S and the mitochondrial MT-CO1 for 537 terminals. The main tree search was carried out under the parsimony optimality criterion, analysing different gene alignments simultaneously. Interestingly, we were not able to recover monophyly of the Proteocephalidae. Additionally, it was difficult to reconcile the tree with host and biogeographical data using traditional character optimization strategies in two dimensions. Therefore, we investigated if host and biogeographical data can be correlated with the parasite clades in a multidimensional space-thus considering multiple layers of information simultaneously. To that end, we used random forests (a class of machine learning models) to test the predictive potential of combined (not individual) host and biogeographical data in the context of the proteocephalid tree. Our resulting models can correctly place 88.85% (on average) of the terminals into eight representative clades. Moreover, we interactively increased the levels of clade perturbation probability and confirmed the expectation that model accuracy negatively correlates with the degree of clade perturbation. Our results show that host and biogeographical data can accurately predict proteocephalid clades in multidimensional space, even though they are difficult to optimize in the parasite tree. These results agree with the assumption that the evolution of proteocephalids is not independent of host and biogeography, and both may provide external support for our tree.
Zobrazit více v PubMed
Alves, P.V. , de Chambrier, A. , Scholz, T. and Luque, J.L. , 2015. A new genus and species of proteocephalidean tapeworm (Cestoda), first parasite found in the driftwood catfish Tocantinsia piresi (Siluriformes: Auchenipteridae) from Brazil. Folia Parasitol. 62, 006. PubMed
Alves, P.V. , de Chambrier, A. , Luque, J.L. and Scholz, T. , 2017. Untangling convoluted taxonomy of Chambriella Rego, Chubb & Pavanelli, 1999 (Cestoda: Proteocephalidae), with erection of Riggenbachiella n. g. and the description of a new species from pimelodid catfishes in the Neotropical Region. Syst. Parasitol. 94, 367–389. PubMed
Alves, P.V. , De Chambrier, A. , Luque, J.L. and Scholz, T. , 2018. Towards a robust systematic baseline of Neotropical fish tapeworms (Cestoda: Proteocephalidae): amended diagnoses of two genera from the redtail fish Phractocephalus hemioliopterus . Zootaxa 4370, 363–380. PubMed
Alves, P.V. , de Chambrier, A. , Luque, J.L. and Scholz, T. , 2021a. Integrative taxonomy reveals hidden cestode diversity in Pimelodus catfishes in the neotropics. Zool. Scr. 50, 210–224.
Alves, P.V. , de Chambrier, A. , Luque, J.L. , Takemoto, R.M. , Tavares, L.E. and Scholz, T. , 2021b. New arrangement of three genera of fish tapeworms (Cestoda: Proteocephalidae) in catfishes (Siluriformes) from the Neotropical Region: taxonomic implications of molecular phylogenetic analyses. Parasitol. Res. 120, 1593–1603. PubMed
Araujo‐Vieira, K. , Blotto, B.L. , Caramaschi, U. , Haddad, C.F. , Faivovich, J. and Grant, T. , 2019. A total evidence analysis of the phylogeny of hatchet‐faced treefrogs (Anura: Hylidae: Sphaenorhynchus). Cladistics 35, 469–486. PubMed
Arredondo, N.J. , de Gil Pertierra, A.A. and de Chambrier, A. , 2014. A new species of Pseudocrepidobothrium (Cestoda: Proteocephalidea) from Pseudoplatystoma reticulatum (Pisces: Siluriformes) in the Paraná River basin (Argentina). Folia Parasitol. 61, 462. PubMed
Arredondo, N.J. , Alves, P.V. and de Gil Pertierra, A.A. , 2017. A new genus of proteocephalid tapeworm (Cestoda) from the marbled swamp eel Synbranchus marmoratus Bloch (Synbranchiformes: Synbranchidae) in the River Paraná basin, Argentina. Folia Parasitol. 64, 015. PubMed
Bergsten, J. , 2005. A review of long‐branch attraction. Cladistics 21, 163–193. PubMed
Borba, V.H. , Martin, C. , Machado‐Silva, J.R. , Xavier, S.C. , de Mello, F.L. and Iñiguez, A.M. , 2021. Machine learning approach to support taxonomic species discrimination based on helminth collections data. Parasit. Vectors 14, 230. PubMed PMC
Boulesteix, A.‐L. , Janitza, S. , Kruppa, J. and König, I.R. , 2012. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 493–507.
Breiman, L. , 2001. Random forests. Mach. Learn. 45, 5–32.
Burkov, A. , 2019. The Hundred‐Page Machine Learning Book. Andriy Burkov, Quebec City, QC.
Caira, J.N. and Jensen, K. , 2014. A digest of elasmobranch tapeworms. J. Parasitol. 100, 373–391. PubMed
Caira, J.N. , Jensen, K. and Holsinger, K. , 2003. On a new index of host specificity. In: Combes, C. and Jordan, J. (Eds.), Taxonomy, Ecology, and Evolution of Metazoan Parasites. Tome I. (Livre Hommage à Louis Euzet). PUP Presses, Perpignan, pp. 161–201.
Caira, J.N. , Jensen, K. , Waeschenbach, A. , Olson, P.D. and Littlewood, D.T.J. , 2014. Orders out of chaos–molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. Int. J. Parasitol. 44, 55–73. PubMed PMC
Caira, J.N. , Jensen, K. and Ivanov, V.A. , 2017. Onchoproteocephalidea II Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014. In: Caira, J.N. and Jensen, K. (Eds.), Planetary Biodiversity Inventory (2008–2017): Tapeworms From Vertebrate Bowels of the Earth. University of Kansas, Natural History Museum, Special Publication No. 25, Lawrence, KS, pp. 279–304.
Caira, J.N. , Jensen, K. and Fyler, C.A. , 2018. A new genus of tapeworm (Cestoda: Onchoproteocephalidea) from sawfish (Elasmobranchii: Pristidae). J. Parasitol. 104, 133–144. PubMed
Cañeda‐Guzmán, I.C. , de Chambrier, A. and Scholz, T. , 2001. Thaumasioscolex didelphidis n. gen., n. sp. (Eucestoda: Proteocephalidae) from the black‐eared opossum Didelphis marsupialis from Mexico, the first proteocephalidean tapeworm from a mammal. J. Parasitol. 87, 639–646. PubMed
de Chambrier, A. and Scholz, T. , 2024. A new species of Australotaenia (Cestoda: Proteocephalidae) from a hylid frog in Australia. Zootaxa 5458, 420–426. PubMed
de Chambrier, A. and Vaucher, C. , 1999. Proteocephalidae et Monticelliidae (Eucestoda: Proteocephalidea) parasites de poissons d'eau douce au Paraguay, avec descriptions d'un genre nouveau et de dix espèces nouvelles. Rev. Suisse Zool. 106, 165–240.
de Chambrier, A. , Zehnder, M. , Vaucher, C. and Mariaux, J. , 2004. The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Syst. Parasitol. 57, 159–171. PubMed
de Chambrier, A. , Coquille, S.C. and Brooks, D.R. , 2006. Ophiotaenia bonneti sp. n. (Eucestoda: Proteocephalidea), a parasite of Rana vaillanti (Anura: Ranidae) in Costa Rica. Folia Parasitol. 53, 125–133. PubMed
de Chambrier, A. , Coquille, S.C. , Mariaux, J. and Tkach, V. , 2009. Redescription of Testudotaenia testudo (Magath, 1924) (Eucestoda: Proteocephalidea), a parasite of Apalone spinifera (Le Sueur) (Reptilia: Trionychidae) and Amia calva L. (Pisces: Amiidae) in North America and erection of the Testudotaeniinae n. subfam. Syst. Parasitol. 73, 49–64. PubMed
de Chambrier, A. , Waeschenbach, A. , Fisseha, M. , Scholz, T. and Mariaux, J. , 2015. A large 28S rDNA‐based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda). ZooKeys 500, 25–59. PubMed PMC
de Chambrier, A. , Scholz, T. , Mariaux, J. and Kuchta, R. , 2017. Onchoproteocephalidea I Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014. In: Caira, J.N. and Jensen, K. (Eds.), Planetary Biodiversity Inventory (2008–2017): Tapeworms From Vertebrate Bowels of the Earth. University of Kansas, Natural History Museum, Special Publication, Lawrence, KS, pp. 251–277.
de Chambrier, A. , Brabec, J. and Scholz, T. , 2020. Molecular data reveal unexpected species diversity of tapeworms of Australasian reptiles: revision of Kapsulotaenia (Cestoda: Proteocephalidae). Zootaxa 4869, 529–561. PubMed
de Chambrier, A. , Kudlai, O. , McAllister, C.T. and Scholz, T. , 2023. Discovering high species diversity of Ophiotaenia tapeworms (Cestoda: Proteocephalidae) of watersnakes (Colubridae) in North America. Int. J. Parasitol. Parasites Wildl. 22, 255–275. PubMed PMC
Chervy, L. , 2024. Manual for the study of tapeworms (Cestoda) parasitic in ray‐finned fish, amphibians and reptiles. Folia Parasitol. 71, 001. PubMed
Cruz‐Laufer, A.J. , Pariselle, A. , Jorissen, M.W. , Muterezi Bukinga, F. , Al Assadi, A. , Van Steenberge, M. , Koblmüller, S. , Sturmbauer, C. , Smeets, K. , Huyse, T. , Jorissen, M.W.P. , Artois, T. and Vanhove, M.P.M. , 2022. Somewhere I belong: phylogeny and morphological evolution in a species‐rich lineage of ectoparasitic flatworms infecting cichlid fishes. Cladistics 38, 465–512. . PubMed
Dallas, T.A. and Becker, D.J. , 2021. Taxonomic resolution affects host‐parasite association model performance. Parasitology 148, 584–590. PubMed PMC
Dallas, T. , Park, A.W. and Drake, J.M. , 2017. Predictability of helminth parasite host range using information on geography, host traits and parasite community structure. Parasitology 144, 200–205. PubMed
D'Bastiani, E. , Princepe, D. , Marquitti, F.M. , Boeger, W.A. , Campião, K.M. and Araujo, S.B. , 2023. Effect of host‐switching on the ecological and evolutionary patterns of parasites. Syst. Biol. 72, 912–924. PubMed
Garamszegi, L.Z. , 2014. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice. Springer, Heidelberg.
Gil de Pertierra, A.A. and de Chambrier, A. , 2000. Rudolphiella szidati sp. n. (Proteocephalidea: Monticelliidae, Rudolphiellinae) parasite of Luciopimelodus pati (Valenciennes, 1840) (Pisces: Pimelodidae) from Argentina with new observations on Rudolphiella lobosa (Riggenbach, 1895). Rev. Suisse Zool. 107, 81–95.
Gil de Pertierra, A.A. and de Chambrier, A. , 2013. Harriscolex nathaliae n. sp. (Cestoda: Proteocephalidea) from Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) in the Paraná River Basin, Argentina. J. Parasitol. 99, 480–486. PubMed
Goloboff, P.A. , Farris, J.S. and Nixon, K.C. , 2008. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
Grant, T. , 2019. Outgroup sampling in phylogenetics: Severity of test and successive outgroup expansion. J. Zool. Syst. Evol. Res. 57, 748–763.
Guindon, S. , Dufayard, J.‐F. , Lefort, V. , Anisimova, M. , Hordijk, W. and Gascuel, O. , 2010. New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the performance of phyml 3.0. Syst. Biol. 59, 307–321. PubMed
Holt, B.G. , Lessard, J.P. , Borregaard, M.K. , Fritz, S.A. , Araújo, M.B. , Dimitrov, D. , Fabre, P.H. , Graham, C.H. , Graves, G.R. , Jønsson, K.A. and Nogués‐Bravo, D. , 2013. An update of Wallace's zoogeographic regions of the world. Science 339, 74–78. PubMed
Jacob Machado, D. , Castroviejo‐Fisher, S. and Grant, T. , 2021. Evidence of absence treated as absence of evidence: the effects of variation in the number and distribution of gaps treated as missing data on the results of standard maximum likelihood analysis. Mol. Phylogenet. Evol. 154, 106966. PubMed
Jacob Machado, J.D. , 2015. YBYRÁ facilitates comparison of large phylogenetic trees. BMC Bioinformatics 16, 204. . PubMed PMC
Jordan, M.I. and Mitchell, T.M. , 2015. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260. PubMed
Kalyaanamoorthy, S. , Minh, B.Q. , Wong, T.K. , Von Haeseler, A. and Jermiin, L.S. , 2017. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. . PubMed PMC
Katoh, K. and Standley, D.M. , 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. PubMed PMC
Katoh, K. , Misawa, K. , Kuma, K.‐I. and Miyata, T. , 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. PubMed PMC
Kluge, A.G. , 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Biol. 38, 7–25.
Kluge, A.G. , 2004. On total evidence: for the record. Cladistics 20, 205–207. PubMed
Marick, J. , Brabec, J. , Choudhury, A. , Scholz, T. and Ash, A. , 2023. The evolution of an ancient tapeworm lineage in its catfish hosts: vicariance, dispersal and diversification in Gangesiinae (Cestoda: Proteocephalidae). Zool. J. Linnean Soc. 198, 509–533.
McAlexander, R.J. and Mentch, L. , 2020. Predictive inference with random forests: a new perspective on classical analyses. Res. Politics 7, 2053168020905487.
Minh, B.Q. , Nguyen, M.A.T. and Von Haeseler, A. , 2013. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195. PubMed PMC
Nguyen, L.‐T. , Schmidt, H.A. , Von Haeseler, A. and Minh, B.Q. , 2015. IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. PubMed PMC
Nixon, K.C. , 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414. PubMed
Nixon, K.C. and Carpenter, J.M. , 1996. On simultaneous analysis. Cladistics 12, 221–241. PubMed
Penczykowski, R.M. , Laine, A.‐L. and Koskella, B. , 2016. Understanding the ecology and evolution of host‐parasite interactions across scales. Evol. Appl. 9, 37–52. PubMed PMC
Pichler, M. and Hartig, F. , 2023. Machine learning and deep learning—A review for ecologists. Methods Ecol. Evol. 14, 994–1016.
Pleijel, F. , Jondelius, U. , Norlinder, E. , Nygren, A. , Oxelman, B. , Schander, C. , Sundberg, P. and Thollesson, M. , 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol. Phylogenet. Evol. 48, 369–371. PubMed
Poulin, R. , 2014. Parasite biodiversity revisited: frontiers and constraints. Int. J. Parasitol. 44, 581–589. PubMed
Revell, L.J. and Harmon, L.J. , 2022. Phylogenetic Comparative Methods in R. Princeton University Press, Princeton, NJ.
Rothacher, Y. and Strobl, C. , 2023. Identifying informative predictor variables with random forests. J. Educ. Behav. Stat. 49, 595–629.
Ruedi, V. and de Chambrier, A. , 2012. Pseudocrepidobothrium ludovici sp. n. (Eucestoda: Proteocephalidea), a parasite of Phractocephalus hemioliopterus (Pisces: Pimelodidae) from Brazilian Amazon. Rev. Suisse Zool. 119, 137–147.
Scholz, T. and Kuchta, R. , 2022. Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and prospects. Parasitology 149, 1876–1893. PubMed PMC
Scholz, T. , de Chambrier, A. , Kuchta, R. , Littlewood, D.T.J. and Waeschenbach, A. , 2013. Macrobothriotaenia ficta (Cestoda: Proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution. Zootaxa 3640, 485–499. . PubMed
Scholz, T. , Barčák, D. , Waeschenbach, A. , McAllister, C.T. and Choudhury, A. , 2020. Tapeworms (Cestoda) of ictalurid catfishes (Siluriformes) in North America: redescription of type species of two genera and proposal of Essexiellinae n. subfam. J. Parasitol. 106, 444–463. PubMed
Scholz, T. , Choudhury, A. and McAllister, C.T. , 2022. A young parasite in an old fish host: A new genus for proteocephalid tapeworms (Cestoda) of bowfin (Amia calva) (Holostei: Amiiformes), and a revised list of its cestodes. Int. J. Parasitol. Parasites Wildl. 18, 101–111. PubMed PMC
Scholz, T. , de Chambrier, A. and Kyslk, J. , 2024. Tapeworms (Cestoda: Proteocephalidae) of the gars (Lepisosteidae), living fossils in America, including proposal of a new genus and a new species. Parasitol. Int. 102, 102916. . PubMed
Waeschenbach, A. , Webster, B. and Littlewood, D. , 2012. Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtdna. Mol. Phylogenet. Evol. 63, 834–847. PubMed
Woodland, W. , 1925. On three new proteocephalids (Cestoda) and a revision of the genera of the family. Parasitology 17, 370–394.