New arrangement of three genera of fish tapeworms (Cestoda: Proteocephalidae) in catfishes (Siluriformes) from the Neotropical Region: taxonomic implications of molecular phylogenetic analyses
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
88887.508591/2020-00
CAPES
135/2012
CAPES
306952/2015-7
CNPq
19-28399-X
CSF
CEP - Centrální evidence projektů
PubMed
33835243
DOI
10.1007/s00436-021-07138-3
PII: 10.1007/s00436-021-07138-3
Knihovny.cz E-zdroje
- Klíčová slova
- COI, Catfishes, Cestodes, Molecular systematics, Neotropical Region, lsrDNA,
- MeSH
- Cestoda klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- nemoci ryb epidemiologie parazitologie MeSH
- řeky MeSH
- sumci parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jižní Amerika epidemiologie MeSH
Tapeworms (Cestoda: Proteocephalidae) are the dominant component of communities of intestinal parasites in pimelodid and other catfishes (Siluriformes) from South America. Even though these parasites have been studied intensively over more than one century, molecular taxonomy and phylogenetics have questioned their morphology-based classification, thus raising doubts about the systematic value of traits commonly used to circumscribe individual taxa. In the present study, members of three morphologically well-characterized genera of proteocephalids from pimelodid (Hemisorubim platyrhynchos and Sorubim lima) and auchenipterid (Ageneiosus inermis) catfishes from the Paraná or Amazon River basins were subjected to DNA sequencing of the large subunit nuclear ribosomal RNA (lsrDNA) and complete mitochondrial cytochrome c oxidase subunit I (COI). Phylogenetic analyses revealed the sister relationship between Manaosia bracodemoca and Mariauxiella piscatorum, and among Mariauxiella pimelodi and Ageneiella brevifilis. As a result, Mar. piscatorum and A. brevifilis are transferred to Manaosia and Mariauxiella, respectively, as Manaosia piscatorum n. comb. and Mariauxiella brevifilis n. comb., and the genus Ageneiella is suppressed. Diagnoses of Manaosia and Mariauxiella are amended. In addition, the present study revealed misidentification of tapeworms whose sequences are deposited in the GenBank database.
Zobrazit více v PubMed
Alves PV, de Chambrier A, Scholz T, Luque JL (2017) Annotated checklist of fish cestodes from South America. Zookeys 650:1–205. https://doi.org/10.3897/zookeys.650.10982 DOI
Alves PV, Kuchta R, Scholz T (2019) Molecular data support monophyly of the recently erected Riggenbachiella (Cestoda: Proteocephalidae), parasites of Neotropical catfishes. Zootaxa 4706:594–597. https://doi.org/10.11646/zootaxa.4706.4.9 DOI
Alves PV, de Chambrier A, Luque JL, Scholz T (2021) Integrative taxonomy reveals hidden cestode diversity in Pimelodus catfishes in the Neotropics. Zool Scr 50:210–224. https://doi.org/10.1111/zsc.12465 DOI
Arredondo NJ, Gil de Pertierra AA (2008) The taxonomic status of Spatulifer cf. maringaensis Pavanelli & Rego, 1989 (Eucestoda: Proteocephalidea) from Sorubim lima (Bloch & Schneider) (Pisces: Siluriformes), and the use of the microthrix pattern in the discrimination of Spatulifer spp. Syst Parasitol 70:223–236. https://doi.org/10.1007/s11230-008-9142-x DOI
Barčák D, Oros M, Hanzelová V, Scholz T (2014) Phenotypic plasticity in Caryophyllaeus brachycollis Janiszewska, 1953 (Cestoda: Caryophyllidea): does fish host play a role? Syst Parasitol 88:153–166. https://doi.org/10.1007/s11230-014-9495-2 DOI
de Chambrier A (2003) Systematic status of Manaosia bracodemoca Woodland, 1935 and Paramonticellia itaipuensis Pavanelli et Rego, 1991 (Eucestoda: Proteocephalidea), parasites of Sorubim lima (Siluriformes: Pimelodidae) from South America. Folia Parasitol 50:121–127. https://doi.org/10.14411/fp.2003.021 DOI
de Chambrier A, Rego AA (1995) Mariauxiella pimelodi n. g., n. sp. (Cestoda: Monticelliidae): a parasite of pimelodid siluroid fishes from South America. Syst Parasitol 30:57–65. https://doi.org/10.1007/BF00009245 DOI
de Chambrier A, Vaucher C (1999) Proteocephalidae et Monticellidae (Eucestoda: Proteocephalidea) parasites de poissons d’eau douce au Paraguay, avec descriptions d’un genre nouveau et de dix espèces nouvelles. Rev Suisse Zool 106:165–240. https://doi.org/10.5962/bhl.part.80074 DOI
de Chambrier A, Zehnder MP, Vaucher C, Mariaux J (2004) The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Syst Parasitol 57:159–171. https://doi.org/10.1023/B:SYPA.0000019083.26876.34
de Chambrier A, Scholz T, Kuchta R, Posel P, Mortenthaler M, Guardia CC (2006) Tapeworms (Cestoda: Proteocephalidea) of fishes from the Amazon River in Peru. Comp Parasitol 73:111–120. https://doi.org/10.1654/4182.1 DOI
de Chambrier A, Waeschenbach A, Fisseha M, Scholz T, Mariaux J (2015) A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda). Zookeys 500:25–59. https://doi.org/10.3897/zookeys.500.9360
de Chambrier A, Scholz T, Mariaux J, Kuchta R (2017) Onchoproteocephalidea I. Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014. In: Caira JN, Jensen K (eds) Planetary biodiversity inventory (2008–2017): tapeworms from vertebrate bowels of the earth. Special Publication No. 25. University of Kansas, Natural History Museum, Lawrence, KS, USA, pp 251–277
de Pertierra G (2009) Luciaella ivanovae n. g., n. sp. (Eucestoda: Proteocephalidea: Peltidocotylinae), a parasite of Ageneiosus inermis (L.) (Siluriformes: Auchenipteridae) in Argentina. Syst Parasitol 73:71–80. https://doi.org/10.1007/s11230-009-9174-x
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guido S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. https://doi.org/10.1093/nar/gkn180
Diesing KM (1850) Systema Helminthum, vol I. Braumüller, Vienna
Freze VI (1965) [Proteocephalata in fish, amphibians and reptiles]. Essentials of Cestodology. Vol. V. Nauka, Moscow, 538 pp. (In Russian: English translation, Israel Program of Scientific Translation, 1969, Cat. No. 1853. v + 597 pp.)
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281 DOI
Jensen K, Caira JN, Cielocha JJ, Littlewood DTJ, Waeschenbach A (2016) When proglottids and scoleces conflict: phylogenetic relationships and a family-level classification of the Lecanicephalidea (Platyhelminthes: Cestoda). Int J Parasitol 46:291–310. https://doi.org/10.1016/j.ijpara.2016.02.002 DOI
Kalyaanamoorthy S, Minh BQ, TKF W, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285 PubMed DOI PMC
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010 PubMed DOI PMC
Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199 PubMed DOI PMC
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874 https://doi.org/10.1093/molbev/msw054
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1–8 https://doi.org/10.1145/2016741.2016785
Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. https://doi.org/10.1093/molbev/mst024 PubMed DOI PMC
Oros M, Uhrovič D, Choudhury A, Mackiewicz JS, Scholz T (2020) Scolex morphology of monozoic tapeworms (Caryophyllidea) from the Nearctic Region: taxonomic and evolutionary implications. J Biomed Inform 39:86–102. https://doi.org/10.1016/j.jbi.2005.08.008 DOI
Planet PJ (2006) Tree disagreement: measuring and testing incongruence in phylogenies. J Biomed Inform 39:86–102. https://doi.org/10.1016/j.jbi.2005.08.008 PubMed DOI
Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371. https://doi.org/10.1016/j.ympev.2008.03.024 DOI
Rego AA (1994) Order Proteocephalidea Mola, 1928. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, pp 257–293
Rego AA, Chubb JC, Pavanelli GC (1999) Cestodes in South American freshwater teleost fishes: keys to genera and brief description of species. Rev Bras de Zool 16:299–367. https://doi.org/10.1590/S0101-8175199900020000
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029 PubMed DOI PMC
Scholz T, de Chambrier A, Kuchta R, DTJ L, Waeschenbach A (2013) Macrobothriotaenia ficta (Cestoda: Proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution. Zootaxa 3640:485–499. https://doi.org/10.11646/zootaxa.3640.3.12 DOI
Sela I, Ashkenazy H, Katoh K, Pupko T (2015) GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43:W7–W14. https://doi.org/10.1093/nar/gkq443 PubMed DOI PMC
Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland.
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a faset online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256 PubMed DOI PMC
Xia X (2018) DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 35:1550–1552. https://doi.org/10.1093/molbev/msy073 PubMed DOI PMC
Zehnder MP, Mariaux J (1999) Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. Int J Parasitol 29:1841–1852. https://doi.org/10.1016/S0020-7519(99)00122-8 DOI
Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and prospects