Retrotransposon-associated long non-coding RNAs in mice and men
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
27044413
DOI
10.1007/s00424-016-1818-5
PII: 10.1007/s00424-016-1818-5
Knihovny.cz E-zdroje
- Klíčová slova
- LINE, LTR, MaLR, Retrotransposon, SINE, lncRNA,
- MeSH
- lidé MeSH
- molekulární evoluce MeSH
- myši MeSH
- retroelementy genetika MeSH
- RNA dlouhá nekódující genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- retroelementy MeSH
- RNA dlouhá nekódující MeSH
Over a half of mammalian genomes is occupied by repetitive elements whose ability to provide functional sequences, move into new locations, and recombine underlies the so-called genome plasticity. At the same time, mobile elements exemplify selfish DNA, which is expanding in the genome at the expense of the host. The selfish generosity of mobile genetic elements is in the center of research interest as it offers insights into mechanisms underlying evolution and emergence of new genes. In terms of numbers, with over 20,000 in count, protein-coding genes make an outstanding >2 % minority. This number is exceeded by an ever-growing list of genes producing long non-coding RNAs (lncRNAs), which do not encode for proteins. LncRNAs are a dynamically evolving population of genes. While it is not yet clear what fraction of lncRNAs represents functionally important ones, their features imply that many lncRNAs emerge at random as new non-functional elements whose functionality is acquired through natural selection. Here, we explore the intersection of worlds of mobile genetic elements (particularly retrotransposons) and lncRNAs. In addition to summarizing essential features of mobile elements and lncRNAs, we focus on how retrotransposons contribute to lncRNA evolution, structure, and function in mammals.
Zobrazit více v PubMed
J Biol Chem. 2004 Mar 26;279(13):13256-64 PubMed
RNA. 2007 Apr;13(4):583-96 PubMed
Mol Cell Biol. 2001 Feb;21(4):1429-39 PubMed
Nucleic Acids Res. 2015 Jan;43(Database issue):D174-80 PubMed
Science. 2005 Sep 2;309(5740):1559-63 PubMed
Gastroenterology. 2007 Jan;132(1):330-42 PubMed
Nature. 2007 May 10;447(7141):167-77 PubMed
PLoS Genet. 2012 Sep;8(9):e1002956 PubMed
J Virol. 2002 Mar;76(5):2410-23 PubMed
Mol Cell. 2011 Sep 16;43(6):904-14 PubMed
Annu Rev Biochem. 2015;84:405-33 PubMed
Prog Mol Subcell Biol. 2011;51:119-46 PubMed
Comp Funct Genomics. 2002;3(6):494-8 PubMed
Nat Rev Genet. 2008 May;9(5):397-405 PubMed
Genes Dev. 2011 Sep 15;25(18):1915-27 PubMed
Genes Dev. 2009 Jul 1;23(13):1494-504 PubMed
PLoS Biol. 2007 Sep 4;5(10):e254 PubMed
Genome Res. 2012 Sep;22(9):1775-89 PubMed
Development. 2013 Mar;140(6):1184-95 PubMed
Curr Opin Genet Dev. 2003 Dec;13(6):651-8 PubMed
J Virol. 2004 Aug;78(16):8868-77 PubMed
Nucleic Acids Res. 1993 Apr 25;21(8):1863-72 PubMed
Development. 2014 Sep;141(18):3458-71 PubMed
Dev Cell. 2004 Oct;7(4):597-606 PubMed
Trends Genet. 2006 Jan;22(1):1-5 PubMed
Nucleic Acids Res. 2013 Feb 1;41(4):2121-37 PubMed
Nat Genet. 2009 May;41(5):563-71 PubMed
Nature. 2009 Mar 12;458(7235):223-7 PubMed
Nature. 2006 Jul 6;442(7098):79-81 PubMed
Nature. 2011 Feb 10;470(7333):284-8 PubMed
Nature. 2012 Feb 15;482(7385):339-46 PubMed
Nature. 1980 Apr 17;284(5757):601-3 PubMed
Nature. 2003 Aug 14;424(6950):788-93 PubMed
Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1443-8 PubMed
EMBO Rep. 2008 Oct;9(10):943-7 PubMed
Science. 2006 Jun 16;312(5780):1653-5 PubMed
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4980-5 PubMed
Cell. 1992 Oct 30;71(3):527-42 PubMed
Trends Cell Biol. 2015 Oct;25(10 ):623-32 PubMed
Nat Genet. 2010 Dec;42(12):1113-7 PubMed
Cell Mol Life Sci. 2007 Mar;64(5):542-54 PubMed
Front Microbiol. 2012 Jul 27;3:262 PubMed
Genome Biol. 2012 Nov 26;13(11):R107 PubMed
Genome Res. 2012 Jun;22(6):1006-14 PubMed
Genome Res. 2001 May;11(5):833-49 PubMed
Science. 2008 Dec 12;322(5908):1717-20 PubMed
Nature. 1980 Apr 17;284(5757):604-7 PubMed
Nucleic Acids Res. 2013 Aug;41(14):6857-69 PubMed
Cell. 2011 Dec 23;147(7):1537-50 PubMed
Genome Res. 2007 Jun;17(6):669-81 PubMed
EMBO J. 2005 Feb 23;24(4):800-12 PubMed
PLoS Genet. 2013 Apr;9(4):e1003470 PubMed
Genome Biol. 2015 Sep 25;16:209 PubMed
PLoS One. 2008 Jun 25;3(6):e2521 PubMed
Genes Dev. 2013 Apr 1;27(7):793-804 PubMed
Science. 2007 Jun 8;316(5830):1488-91 PubMed
Nature. 2002 Dec 5;420(6915):520-62 PubMed
PLoS One. 2009 Nov 02;4(11):e7677 PubMed
Nat Rev Genet. 2009 Oct;10(10):691-703 PubMed
Cell. 2000 Sep 29;103(1):9-12 PubMed
Annu Rev Genet. 2007;41:331-68 PubMed
Cell. 1982 Mar;28(3):433-4 PubMed
Stem Cells. 2009 Nov;27(11):2691-702 PubMed
Curr Opin Genet Dev. 2012 Jun;22(3):191-203 PubMed
Nat Struct Mol Biol. 2013 Mar;20(3):300-7 PubMed
Nucleic Acids Res. 2006;34(19):5491-7 PubMed
Nature. 2007 Jun 7;447(7145):661-78 PubMed
FEBS Lett. 2008 Jun 11;582(13):1919-27 PubMed
Nat Struct Mol Biol. 2013 Mar;20(3):339-46 PubMed
Cell Rep. 2015 May 19;11(7):1110-22 PubMed
J Biol Chem. 1998 Jul 3;273(27):17079-85 PubMed
Nature. 2012 Nov 15;491(7424):454-7 PubMed
Nature. 1961 Dec 30;192:1227-32 PubMed
Nature. 2004 May 20;429(6989):268-74 PubMed
Nat Genet. 2010 Jul;42(7):631-4 PubMed
Nature. 2014 Jan 30;505(7485):635-40 PubMed
EMBO J. 2007 Jun 6;26(11):2670-81 PubMed
Science. 2004 Mar 12;303(5664):1626-32 PubMed
Cytogenet Genome Res. 2005;110(1-4):333-41 PubMed
Nat Struct Mol Biol. 2004 Sep;11(9):822-9 PubMed
Science. 2007 Jul 13;317(5835):248-51 PubMed
Nat Genet. 2014 Jun;46(6):558-66 PubMed
Nature. 2002 Dec 5;420(6915):563-73 PubMed
Cell. 2002 Oct 18;111(2):209-18 PubMed
PLoS Genet. 2013;9(7):e1003588 PubMed
Curr Opin Genet Dev. 2015 Apr;31:57-66 PubMed
Cell. 2009 Feb 20;136(4):629-41 PubMed
Genome Biol. 2004;5(6):225 PubMed
Dev Biol. 2004 May 1;269(1):276-85 PubMed
Nature. 2001 Feb 15;409(6822):860-921 PubMed
Cell Rep. 2013 Jun 27;3(6):2179-90 PubMed
De novo emergence, existence, and demise of a protein-coding gene in murids