Spatiotemporal dynamics and selectivity of mRNA translation during mouse pre-implantation development
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
22-27301S
Czech Science Foundation
23-07532S
Czech Science Foundation
EXCELLENCECZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE
Ministry of Education
25-18241S
Czech Science Foundation
Research programme Strategy AV21 FUTURE OF ASSISTED REPRODUCTION (ART)
RVO67985904
Institutional Research Concept
R01 HD102533
NICHD NIH HHS - United States
PPLZ-L200452502
Czech Science Foundation
R01HD102533
NIH HHS - United States
PubMed
40985772
PubMed Central
PMC12455612
DOI
10.1093/nar/gkaf956
PII: 8262243
Knihovny.cz E-resources
- MeSH
- Adenosine analogs & derivatives metabolism MeSH
- Blastocyst metabolism MeSH
- Embryonic Development * genetics MeSH
- Eukaryotic Initiation Factor-1 metabolism genetics MeSH
- RNA, Messenger * metabolism genetics MeSH
- Mice MeSH
- Oocytes metabolism growth & development MeSH
- Polyribosomes metabolism genetics MeSH
- Protein Biosynthesis * MeSH
- Ribosomes metabolism MeSH
- Gene Expression Regulation, Developmental * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine MeSH
- Eukaryotic Initiation Factor-1 MeSH
- RNA, Messenger * MeSH
- N-methyladenosine MeSH Browser
Translational regulation plays a pivotal role during pre-implantation development. However, the mechanisms by which messenger RNAs (mRNAs) are selectively regulated over time, along with their dynamic utilization and fate during this period, remain largely unknown. Here, we performed fraction-resolved polysome profiling and characterized translational dynamics across oocytes and early embryo development. This approach allowed us to examine the changes in translation during pre-implantation development in high resolution and uncover previously unrecognized modes of translational selectivity. We observed a stage-specific delay in translation, characterized by the postponed recruitment of stored mRNAs-either unbound or associated with light ribosomal fractions-into actively translating polysomes (heavy fraction). Comparative analysis of translatome with proteomics, RNA N6-methyladenosine modifications, and mRNA features further revealed both coordinated and distinct regulatory mechanisms during pre-implantation development. Furthermore, we identified a eukaryotic initiation factor 1A domain containing 3, Eif1ad3, which is exclusively translated at the two-cell stage and is essential for embryonic development by regulating ribosome biogenesis and protein synthesis. Collectively, our study provides a valuable resource of spatiotemporal translational regulation in mammalian pre-implantation development and highlights a previously uncharacterized translation initiation factor critical for early embryos.
See more in PubMed
Sonenberg N, Hinnebusch AG Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Genes Dev. 2009; 136:418–31. 10.1016/j.cell.2009.01.042. PubMed DOI PMC
Iyyappan R, Aleshkina D, Ming H et al. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res. 2023; 51:12076–91. 10.1093/nar/gkad996. PubMed DOI PMC
Yang G, Xin Q, Dean J Degradation and translation of maternal mRNA for embryogenesis. Trends Genet. 2024; 40:238–49. 10.1016/j.tig.2023.12.008. PubMed DOI
Susor A, Kubelka M Translational regulation in the mammalian oocyte. Results Probl Cell Differ. 2017; 63:257–95. PubMed
Becker K, Bluhm A, Casas-Vila N et al. Quantifying post-transcriptional regulation in the development of PubMed DOI PMC
Dang Y, Zhu L, Yuan P et al. Functional profiling of stage-specific proteome and translational transition across human pre-implantation embryo development at a single-cell resolution. Cell Discov. 2023; 9:10. 10.1038/s41421-022-00491-2. PubMed DOI PMC
Gao Y, Liu X, Tang B et al. Protein expression landscape of mouse embryos during pre-implantation development. Cell Rep. 2017; 21:3957–69. 10.1016/j.celrep.2017.11.111. PubMed DOI
Banliat C, Mahe C, Lavigne R et al. The proteomic analysis of bovine embryos developed PubMed DOI PMC
Banliat C, Mahe C, Lavigne R et al. Dynamic changes in the proteome of early bovine embryos developed PubMed DOI PMC
Zhang C, Wang M, Li Y et al. Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Sci Adv. 2022; 8:eabj3967. 10.1126/sciadv.abj3967. PubMed DOI PMC
Xiong Z, Xu K, Lin Z et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat Cell Biol. 2022; 24:968–80. 10.1038/s41556-022-00928-6. PubMed DOI
Masek T, Del Llano E, Gahurova L et al. Identifying the translatome of mouse NEBD-stage oocytes via SSP-profiling; a novel polysome fractionation method. Int J Mol Sci. 2020; 21:1254. 10.3390/ijms21041254. PubMed DOI PMC
Zhu L, Zhou T, Iyyappan R et al. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development. 2022; 149: 10.1242/dev.200819. PubMed DOI PMC
Jansova D, Aleshkina D, Jindrova A et al. Single molecule RNA localization and translation in the mammalian oocyte and embryo. J Mol Biol. 2021; 433:167166. 10.1016/j.jmb.2021.167166. PubMed DOI
Hamatani T, Carter MG, Sharov AA et al. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell. 2004; 6:117–31. 10.1016/S1534-5807(03)00373-3. PubMed DOI
Teixeira FK, Lehmann R Translational control during developmental transitions. Cold Spring Harb Perspect Biol. 2019; 11: 10.1101/cshperspect.a032987. PubMed DOI PMC
Li D, Wang J Ribosome heterogeneity in stem cells and development. J Cell Biol. 2020; 219:e202001108. 10.1083/jcb.202001108. PubMed DOI PMC
Knott JG, Gardner AJ, Madgwick S et al. Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca PubMed DOI
Pakrasi PL, Dey SK Role of calmodulin in blastocyst formation in the mouse. J Reprod Fertil. 1984; 71:513–7. 10.1530/jrf.0.0710513. PubMed DOI
Poueymirou WT, Schultz RM Regulation of mouse preimplantation development: inhibitory effect of the calmodulin antagonist W-7 on the first cleavage. Mol Reprod Dev. 1990; 26:211–6. 10.1002/mrd.1080260303. PubMed DOI
Biziaev N, Shuvalov A, Salman A et al. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res. 2024; 52:7792–808. 10.1093/nar/gkae510. PubMed DOI PMC
Mao Y, Dong L, Liu XM et al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 2019; 10:5332. PubMed PMC
Jain S, Koziej L, Poulis P et al. Modulation of translational decoding by m(6)A modification of mRNA. Nat Commun. 2023; 14:4784. 10.1038/s41467-023-40422-7. PubMed DOI PMC
Lee K, Cho K, Morey R et al. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep. 2024; 43:113710. 10.1016/j.celrep.2024.113710. PubMed DOI PMC
Wang Y, Li Y, Skuland T et al. The RNA m(6)A landscape of mouse oocytes and preimplantation embryos. Nat Struct Mol Biol. 2023; 30:703–9. 10.1038/s41594-023-00969-x. PubMed DOI PMC
Sun H, Sun G, Zhang H et al. Proteomic profiling reveals the molecular control of oocyte maturation. Mol Cell Proteomics. 2023; 22:100481. 10.1016/j.mcpro.2022.100481. PubMed DOI PMC
Tanguay RL, Gallie DR Translational efficiency is regulated by the length of the 3' untranslated region. Mol Cell Biol. 1996; 16:146–56. 10.1128/MCB.16.1.146. PubMed DOI PMC
West JD, Smith HJ, Vu LT et al. The quantitative impact of 3'UTRs on gene expression. Nucleic Acids Res. 2025; 53:1362–4962. 10.1093/nar/gkaf568. PubMed DOI PMC
Jackson RJ, Hellen CU, Pestova TV The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010; 11:113–27. 10.1038/nrm2838. PubMed DOI PMC
Susor A, Jelinkova L, Karabinova P et al. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol Reprod Dev. 2008; 75:1716–25. 10.1002/mrd.20913. PubMed DOI
Schulz KN, Harrison MM Mechanisms regulating zygotic genome activation. Nat Rev Genet. 2019; 20:221–34. 10.1038/s41576-018-0087-x. PubMed DOI PMC
Ozadam H, Tonn T, Han CM et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature. 2023; 618:1057–64. 10.1038/s41586-023-06228-9. PubMed DOI PMC
Sachs A The role of poly(A) in the translation and stability of mRNA. Curr Opin Cell Biol. 1990; 2:1092–8. 10.1016/0955-0674(90)90161-7. PubMed DOI
Passmore LA, Tang TT The long and short of it. eLife. 2021; 10:e66493. 10.7554/eLife.70757. PubMed DOI PMC
Passmore LA, Coller J Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol. 2022; 23:93–106. 10.1038/s41580-021-00417-y. PubMed DOI PMC
Clegg KB, Piko L Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol. 1983; 95:331–41. 10.1016/0012-1606(83)90034-9. PubMed DOI
Xiang K, Ly J, Bartel DP Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev Cell. 2024; 59:1058–1074. 10.1016/j.devcel.2024.02.007. PubMed DOI
Fierro L, Ishii A, Aoyama H et al. Comprehensive analysis of mRNA 3' ends during early zebrafish development reveals dynamics of 3'UTR changes on a genome-wide scale. FEBS Lett. 2025; 2129–41. 10.1002/1873-3468.70106. PubMed DOI
Lamacova L, Jansova D, Jiang Z et al. CPEB3 maintains developmental competence of the oocyte. Cells. 2024; 13:850–68. 10.3390/cells13100850. PubMed DOI PMC
Paulson EE, Fishman EL, Schultz RM et al. Embryonic microRNAs are essential for bovine preimplantation embryo development. Proc Natl Acad Sci USA. 2022; 119:e2212942119. 10.1073/pnas.2212942119. PubMed DOI PMC
Liu Y, Sun J, Su Y et al. Nuclear-localized eukaryotic translation initiation factor 1A is involved in mouse preimplantation embryo development. J Mol Histol. 2021; 52:965–73. 10.1007/s10735-021-10014-0. PubMed DOI
Sadato D, Ono T, Gotoh-Saito S et al. Eukaryotic translation initiation factor 3 (eIF3) subunit e is essential for embryonic development and cell proliferation. FEBS Open Bio. 2018; 8:1188–201. 10.1002/2211-5463.12482. PubMed DOI PMC
Yang G, Xin Q, Feng I et al. Germ cell-specific eIF4E1b regulates maternal mRNA translation to ensure zygotic genome activation. Genes Dev. 2023; 37:418–31. 10.1101/gad.350400.123. PubMed DOI PMC