An intermediate-effect size variant in UMOD confers risk for chronic kidney disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_PC_17228
Medical Research Council - United Kingdom
MC_QA137853
Medical Research Council - United Kingdom
PubMed
35947615
PubMed Central
PMC9388113
DOI
10.1073/pnas.2114734119
Knihovny.cz E-zdroje
- Klíčová slova
- Autosomal Dominant Tubulointerstitial Kidney Disease, ER stress, genetic architecture, rare disease, uromodulin,
- MeSH
- chronická renální insuficience * genetika MeSH
- heterozygot MeSH
- lidé MeSH
- mutace MeSH
- uromodulin * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- UMOD protein, human MeSH Prohlížeč
- uromodulin * MeSH
The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.
Biosciences Institute Newcastle University Newcastle upon Tyne NE1 3BZ United Kingdom
Centre for Integrative Biological Signalling Studies University of Freiburg D 79106 Freiburg Germany
Department of Medicine Cantonal Hospital Frauenfeld 8501 Frauenfeld Switzerland
Department of Medicine Royal College of Surgeons in Ireland 1297 Dublin Ireland
Division of Nephrology Beaumont General Hospital 1297 Dublin Ireland
Division of Nephrology Cliniques Universitaires Saint Luc 1200 Brussels Belgium
Faculty of Biology University of Freiburg D 79106 Freiburg Germany
Genetics Department Laboratoire Eurofins Biomnis Lyon 69007 France
Institute of Physiology University of Zurich CH 8057 Zurich Switzerland
Section on Nephrology Wake Forest School of Medicine Winston Salem NC 27101
Zobrazit více v PubMed
Eckardt K.-U., et al. , Evolving importance of kidney disease: From subspecialty to global health burden. Lancet 382, 158–169 (2013). PubMed
Devuyst O., Pattaro C., The UMOD locus: Insights into the pathogenesis and prognosis of kidney disease. J. Am. Soc. Nephrol. 29, 713–726 (2018). PubMed PMC
Tin A., Köttgen A., Genome-wide association studies of CKD and related traits. Clin. J. Am. Soc. Nephrol. 15, 1643–1656 (2020). PubMed PMC
Wuttke M., et al. ; Lifelines Cohort Study; V. A. Million Veteran Program, A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019). PubMed PMC
Trudu M., et al. ; SKIPOGH team, Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013). PubMed PMC
Gorski M., et al. , Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney Int. 99, 926–939 (2020). PubMed PMC
Devuyst O., Olinger E., Rampoldi L., Uromodulin: From physiology to rare and complex kidney disorders. Nat. Rev. Nephrol. 13, 525–544 (2017). PubMed
Schaeffer C., Devuyst O., Rampoldi L., Uromodulin: Roles in health and disease. Annu. Rev. Physiol. 83, 477–501 (2021). PubMed
Malagolini N., Cavallone D., Serafini-Cessi F., Intracellular transport, cell-surface exposure and release of recombinant Tamm-Horsfall glycoprotein. Kidney Int. 52, 1340–1350 (1997). PubMed
Devuyst O., et al. , Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Primers 5, 60 (2019). PubMed
Olinger E., et al. , Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 98, 717–731 (2020). PubMed
Gast C., et al. , Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 19, 301 (2018). PubMed PMC
Wuttke M., Köttgen A., Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 12, 549–562 (2016). PubMed
Walsh R., Tadros R., Bezzina C. R., When genetic burden reaches threshold. Eur. Heart J. 41, 3849–3855 (2020). PubMed PMC
Katsanis N., The continuum of causality in human genetic disorders. Genome Biol. 17, 233 (2016). PubMed PMC
Groopman E. E., et al. , Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019). PubMed PMC
Manolio T. A., et al. , Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009). PubMed PMC
Karczewski K. J., et al. ; Genome Aggregation Database Consortium, The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed PMC
Ioannidis N. M., et al. , REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016). PubMed PMC
Kidd K., et al. , Genetic and clinical predictors of age of ESKD in individuals with autosomal dominant tubulointerstitial kidney disease due to UMOD mutations. Kidney Int. Rep. 5, 1472–1485 (2020). PubMed PMC
Fletcher A. P., Neuberger A., Ratcliffe W. A., Tamm-Horsfall urinary glycoprotein. The chemical composition. Biochem. J. 120, 417–424 (1970). PubMed PMC
Selander-Sunnerhagen M., et al. , How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J. Biol. Chem. 267, 19642–19649 (1992). PubMed
Bajaj K., et al. , Stereochemical criteria for prediction of the effects of proline mutations on protein stability. PLoS Comput. Biol. 3, e241 (2007). PubMed PMC
Carlier E., et al. , Disulfide bridge reorganization induced by proline mutations in maurotoxin. FEBS Lett. 489, 202–207 (2001). PubMed
Ittisoponpisan S., et al. , Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J. Mol. Biol. 431, 2197–2212 (2019). PubMed PMC
Pandurangan A. P., Ochoa-Montaño B., Ascher D. B., Blundell T. L., SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 45 (W1), W229–W235 (2017). PubMed PMC
Ekici A. B., et al. , Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int. 86, 589–599 (2014). PubMed
Kirby A., et al. , Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013). PubMed PMC
Genovese G., et al. , Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010). PubMed PMC
Mallawaarachchi A. C., Furlong T. J., Shine J., Harris P. C., Cowley M. J., Population data improves variant interpretation in autosomal dominant polycystic kidney disease. Genet. Med. 21, 1425–1434 (2019). PubMed PMC
Piret S. E., et al. , A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 10, 773–786 (2017). PubMed PMC
Schaeffer C., Merella S., Pasqualetto E., Lazarevic D., Rampoldi L., Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 12, e0175970 (2017). PubMed PMC
Brown M. K., Naidoo N., The endoplasmic reticulum stress response in aging and age-related diseases. Front. Physiol. 3, 263 (2012). PubMed PMC
Gray V. E., Hause R. J., Luebeck J., Shendure J., Fowler D. M., Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124.e3 (2018). PubMed PMC
Dvela-Levitt M., et al. , Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e23 (2019). PubMed
Gibson G., Rare and common variants: Twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012). PubMed PMC
Minikel E. V., et al. ; Exome Aggregation Consortium (ExAC), Quantifying prion disease penetrance using large population control cohorts. Sci. Transl. Med. 8, 322ra9 (2016). PubMed PMC
Flannick J., et al. , Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat. Genet. 45, 1380–1385 (2013). PubMed PMC
Althari S., et al. , Unsupervised clustering of missense variants in HNF1A using multidimensional functional data aids clinical interpretation. Am. J. Hum. Genet. 107, 670–682 (2020). PubMed PMC
Estrada K., et al. ; SIGMA Type 2 Diabetes Consortium, Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014). PubMed PMC
Cruchaga C., et al. ; Alzheimer’s Research UK (ARUK) Consortium, Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505, 550–554 (2014). PubMed PMC
Bollée G., et al. , Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 6, 2429–2438 (2011). PubMed PMC
Gong K., et al. , Autosomal dominant tubulointerstitial kidney disease genotype and phenotype correlation in a Chinese cohort. Sci. Rep. 11, 3615 (2021). PubMed PMC
Zaucke F., et al. , Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum. Mol. Genet. 19, 1985–1997 (2010). PubMed PMC
Friedman D. J., Pollak M. R., APOL1 nephropathy: From genetics to clinical applications. Clin. J. Am. Soc. Nephrol. 16, 294–303 (2021). PubMed PMC
Whiffin N., et al. , Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 19, 1151–1158 (2017). PubMed PMC
Zhou X., et al. , Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat. Genet. 48, 4–6 (2016). PubMed PMC
Gao J., et al. , Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013). PubMed PMC
Cerami E., et al. , The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012). PubMed PMC
Taliun D., et al. ; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021). PubMed PMC
Kopanos C., et al. , VarSome: The human genomic variant search engine. Bioinformatics 35, 1978–1980 (2019). PubMed PMC
Plotkin M., et al. , A uromodulin mutation drives autoimmunity and kidney mononuclear phagocyte endoplasmic reticulum stress. Am. J. Pathol. 190, 2436–2452 (2020). PubMed PMC
Liu M., et al. , Novel UMOD mutations in familial juvenile hyperuricemic nephropathy lead to abnormal uromodulin intracellular trafficking. Gene 531, 363–369 (2013). PubMed
Raffler G., Zitt E., Sprenger-Mähr H., Nagel M., Lhotta K., Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: Seek and you will find. Wien. Klin. Wochenschr. 128, 291–294 (2016). PubMed
Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors
Autosomal dominant tubulointerstitial kidney disease: A review