An intermediate-effect size variant in UMOD confers risk for chronic kidney disease

. 2022 Aug 16 ; 119 (33) : e2114734119. [epub] 20220810

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35947615

Grantová podpora
MC_PC_17228 Medical Research Council - United Kingdom
MC_QA137853 Medical Research Council - United Kingdom

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.

Biosciences Institute Newcastle University Newcastle upon Tyne NE1 3BZ United Kingdom

Centre de Néphrologie et Transplantation Rénale Centre Hospitalier Universitaire Marseille 13005 France

Centre for Integrative Biological Signalling Studies University of Freiburg D 79106 Freiburg Germany

Department of Medicine Cantonal Hospital Frauenfeld 8501 Frauenfeld Switzerland

Department of Medicine Royal College of Surgeons in Ireland 1297 Dublin Ireland

Department of Nephrology and Hypertension Inselspital Bern University Hospital University of Bern 3010 Bern Switzerland

Department of Nephrology and Hypertension University Hospital Erlangen Friedrich Alexander Universität Erlangen Nürnberg 91054 Erlangen Germany

Department of Nephrology and Medical Intensive Care Charité Universitätsmedizin Berlin Freie Universität Berlin and Humboldt Universität zu Berlin 10117 Berlin Germany

Department of Pediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University 128 08 Prague Czech Republic

Division of Nephrology Beaumont General Hospital 1297 Dublin Ireland

Division of Nephrology Cliniques Universitaires Saint Luc 1200 Brussels Belgium

Faculty of Biology University of Freiburg D 79106 Freiburg Germany

Genetics Department Laboratoire Eurofins Biomnis Lyon 69007 France

Institute of Genetic Epidemiology Faculty of Medicine and Medical Center University of Freiburg D 79106 Freiburg Germany

Institute of Physiology University of Zurich CH 8057 Zurich Switzerland

Marseille Medical Genetics Bioinformatics and Genetics Unité Mixte de Recherche _S910 Aix Marseille Université Marseille 13005 France

Molecular Genetics of Renal Disorders Division of Genetics and Cell Biology Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele Milan 20132 Italy

National Institute for Health and Care Research Newcastle Biomedical Research Centre Newcastle upon Tyne NE4 5PL United Kingdom

Renal Services Newcastle Upon Tyne Hospitals National Health Service Trust Newcastle upon Tyne NE7 7DN United Kingdom

Section on Nephrology Wake Forest School of Medicine Winston Salem NC 27101

Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne NE1 3BZ United Kingdom

Komentář v

PubMed

Zobrazit více v PubMed

Eckardt K.-U., et al. , Evolving importance of kidney disease: From subspecialty to global health burden. Lancet 382, 158–169 (2013). PubMed

Devuyst O., Pattaro C., The UMOD locus: Insights into the pathogenesis and prognosis of kidney disease. J. Am. Soc. Nephrol. 29, 713–726 (2018). PubMed PMC

Tin A., Köttgen A., Genome-wide association studies of CKD and related traits. Clin. J. Am. Soc. Nephrol. 15, 1643–1656 (2020). PubMed PMC

Wuttke M., et al. ; Lifelines Cohort Study; V. A. Million Veteran Program, A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019). PubMed PMC

Trudu M., et al. ; SKIPOGH team, Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013). PubMed PMC

Gorski M., et al. , Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney Int. 99, 926–939 (2020). PubMed PMC

Devuyst O., Olinger E., Rampoldi L., Uromodulin: From physiology to rare and complex kidney disorders. Nat. Rev. Nephrol. 13, 525–544 (2017). PubMed

Schaeffer C., Devuyst O., Rampoldi L., Uromodulin: Roles in health and disease. Annu. Rev. Physiol. 83, 477–501 (2021). PubMed

Malagolini N., Cavallone D., Serafini-Cessi F., Intracellular transport, cell-surface exposure and release of recombinant Tamm-Horsfall glycoprotein. Kidney Int. 52, 1340–1350 (1997). PubMed

Devuyst O., et al. , Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Primers 5, 60 (2019). PubMed

Olinger E., et al. , Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 98, 717–731 (2020). PubMed

Gast C., et al. , Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 19, 301 (2018). PubMed PMC

Wuttke M., Köttgen A., Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 12, 549–562 (2016). PubMed

Walsh R., Tadros R., Bezzina C. R., When genetic burden reaches threshold. Eur. Heart J. 41, 3849–3855 (2020). PubMed PMC

Katsanis N., The continuum of causality in human genetic disorders. Genome Biol. 17, 233 (2016). PubMed PMC

Groopman E. E., et al. , Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019). PubMed PMC

Manolio T. A., et al. , Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009). PubMed PMC

Karczewski K. J., et al. ; Genome Aggregation Database Consortium, The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed PMC

Ioannidis N. M., et al. , REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016). PubMed PMC

Kidd K., et al. , Genetic and clinical predictors of age of ESKD in individuals with autosomal dominant tubulointerstitial kidney disease due to UMOD mutations. Kidney Int. Rep. 5, 1472–1485 (2020). PubMed PMC

Fletcher A. P., Neuberger A., Ratcliffe W. A., Tamm-Horsfall urinary glycoprotein. The chemical composition. Biochem. J. 120, 417–424 (1970). PubMed PMC

Selander-Sunnerhagen M., et al. , How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J. Biol. Chem. 267, 19642–19649 (1992). PubMed

Bajaj K., et al. , Stereochemical criteria for prediction of the effects of proline mutations on protein stability. PLoS Comput. Biol. 3, e241 (2007). PubMed PMC

Carlier E., et al. , Disulfide bridge reorganization induced by proline mutations in maurotoxin. FEBS Lett. 489, 202–207 (2001). PubMed

Ittisoponpisan S., et al. , Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J. Mol. Biol. 431, 2197–2212 (2019). PubMed PMC

Pandurangan A. P., Ochoa-Montaño B., Ascher D. B., Blundell T. L., SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 45 (W1), W229–W235 (2017). PubMed PMC

Ekici A. B., et al. , Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int. 86, 589–599 (2014). PubMed

Kirby A., et al. , Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013). PubMed PMC

Genovese G., et al. , Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010). PubMed PMC

Mallawaarachchi A. C., Furlong T. J., Shine J., Harris P. C., Cowley M. J., Population data improves variant interpretation in autosomal dominant polycystic kidney disease. Genet. Med. 21, 1425–1434 (2019). PubMed PMC

Piret S. E., et al. , A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 10, 773–786 (2017). PubMed PMC

Schaeffer C., Merella S., Pasqualetto E., Lazarevic D., Rampoldi L., Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 12, e0175970 (2017). PubMed PMC

Brown M. K., Naidoo N., The endoplasmic reticulum stress response in aging and age-related diseases. Front. Physiol. 3, 263 (2012). PubMed PMC

Gray V. E., Hause R. J., Luebeck J., Shendure J., Fowler D. M., Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124.e3 (2018). PubMed PMC

Dvela-Levitt M., et al. , Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e23 (2019). PubMed

Gibson G., Rare and common variants: Twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012). PubMed PMC

Minikel E. V., et al. ; Exome Aggregation Consortium (ExAC), Quantifying prion disease penetrance using large population control cohorts. Sci. Transl. Med. 8, 322ra9 (2016). PubMed PMC

Flannick J., et al. , Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat. Genet. 45, 1380–1385 (2013). PubMed PMC

Althari S., et al. , Unsupervised clustering of missense variants in HNF1A using multidimensional functional data aids clinical interpretation. Am. J. Hum. Genet. 107, 670–682 (2020). PubMed PMC

Estrada K., et al. ; SIGMA Type 2 Diabetes Consortium, Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311, 2305–2314 (2014). PubMed PMC

Cruchaga C., et al. ; Alzheimer’s Research UK (ARUK) Consortium, Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505, 550–554 (2014). PubMed PMC

Bollée G., et al. , Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 6, 2429–2438 (2011). PubMed PMC

Gong K., et al. , Autosomal dominant tubulointerstitial kidney disease genotype and phenotype correlation in a Chinese cohort. Sci. Rep. 11, 3615 (2021). PubMed PMC

Zaucke F., et al. , Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum. Mol. Genet. 19, 1985–1997 (2010). PubMed PMC

Friedman D. J., Pollak M. R., APOL1 nephropathy: From genetics to clinical applications. Clin. J. Am. Soc. Nephrol. 16, 294–303 (2021). PubMed PMC

Whiffin N., et al. , Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 19, 1151–1158 (2017). PubMed PMC

Zhou X., et al. , Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat. Genet. 48, 4–6 (2016). PubMed PMC

Gao J., et al. , Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013). PubMed PMC

Cerami E., et al. , The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012). PubMed PMC

Taliun D., et al. ; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021). PubMed PMC

Kopanos C., et al. , VarSome: The human genomic variant search engine. Bioinformatics 35, 1978–1980 (2019). PubMed PMC

Plotkin M., et al. , A uromodulin mutation drives autoimmunity and kidney mononuclear phagocyte endoplasmic reticulum stress. Am. J. Pathol. 190, 2436–2452 (2020). PubMed PMC

Liu M., et al. , Novel UMOD mutations in familial juvenile hyperuricemic nephropathy lead to abnormal uromodulin intracellular trafficking. Gene 531, 363–369 (2013). PubMed

Raffler G., Zitt E., Sprenger-Mähr H., Nagel M., Lhotta K., Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: Seek and you will find. Wien. Klin. Wochenschr. 128, 291–294 (2016). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...