polysome profiling
Dotaz
Zobrazit nápovědu
In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- buněčné linie MeSH
- editace RNA * MeSH
- genový knockout MeSH
- hepatocyty * metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- polyribozomy metabolismus genetika MeSH
- proteiny vázající RNA * genetika metabolismus MeSH
- proteosyntéza MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
STUDY QUESTION: Which actively translated maternal transcripts are differentially regulated between clinically relevant in vitro and in vivo maturation (IVM) conditions in mouse oocytes and zygotes? SUMMARY ANSWER: Our findings uncovered significant differences in the global transcriptome as well as alterations in the translation of specific transcripts encoding components of energy production, cell cycle regulation, and protein synthesis in oocytes and RNA metabolism in zygotes. WHAT IS KNOWN ALREADY: Properly regulated translation of stored maternal transcripts is a crucial factor for successful development of oocytes and early embryos, particularly due to the transcriptionally silent phase of meiosis. STUDY DESIGN, SIZE, DURATION: This is a basic science study utilizing an ICR mouse model, best suited for studying in vivo maturation. In the treatment group, fully grown germinal vesicle oocytes from stimulated ovaries were in vitro matured to the metaphase II (MII) stage either as denuded without gonadotropins (IVM DO), or as cumulus-oocyte complexes (IVM COC) in the presence of 0.075 IU/ml recombinant FSH (rFSH) and 0.075 IU/ml recombinant hCG (rhCG). To account for changes in developmental competence, IVM COC from non-stimulated ovaries (IVM COC-) were included. In vivo matured MII oocytes (IVO) from stimulated ovaries were used as a control after ovulation triggering with rhCG. To simulate standard IVM conditions, we supplemented media with amino acids, vitamins, and bovine serum albumin. Accordingly, in vitro pronuclear zygotes (IMZ) were generated by IVF from IVM DO, and were compared to in vivo pronuclear zygotes (IVZ). All experiments were performed in quadruplicates with samples collected for both polyribosome fractionation and total transcriptome analysis. Samples were collected over three consecutive months. PARTICIPANTS/MATERIALS, SETTING, METHODS: All ICR mice were bred under legal permission for animal experimentation (no. MZE-24154/2021-18134) obtained from the Ministry of Agriculture of the Czech Republic. Actively translated (polyribosome occupied) maternal transcripts were detected in in vitro and in vivo matured mouse oocytes and zygotes by density gradient ultracentrifugation, followed by RNA isolation and high-throughput RNA sequencing. Bioinformatic analysis was performed and subsequent data validation was done by western blotting, radioactive isotope, and mitotracker dye labelling. MAIN RESULTS AND THE ROLE OF CHANCE: Gene expression analysis of acquired polysome-derived high-throughput RNA sequencing data revealed significant changes (RPKM ≥ 0.2; P ≤ 0.005) in translation between in vitro and in vivo matured oocytes and respectively produced pronuclear zygotes. Surprisingly, the comparison between IVM DO and IVM COC RNA-seq data of both fractionated and total transcriptome showed very few transcripts with more than a 2-fold difference. Data validation by radioactive isotope labelling revealed a decrease in global translation bof20% in IVM DO and COC samples in comparison to IVO samples. Moreover, IVM conditions compromised oocyte energy metabolism, which was demonstrated by both changes in polysome recruitment of each of 13 mt-protein-coding transcripts as well as by validation using mitotracker red staining. LARGE SCALE DATA: The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE241633 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241633). LIMITATIONS, REASONS FOR CAUTION: It is extremely complicated to achieve in vivo consistency in animal model systems such as porcine or bovine. To achieve a high reproducibility of in vivo stimulations, the ICR mouse model was selected. However, careful interpretation of our findings with regard to assisted reproductive techniques has to be made by taking into consideration intra-species differences between the mouse model and humans. Also, the sole effect of the cumulus cells' contribution could not be adequately addressed by comparing IVM COC and IVM DO, because the IVM DO were matured without gonadotropin supplementation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings confirmed the inferiority of standard IVM technology compared with the in vivo approach. It also pointed at compromised biological processes employed in the critical translational regulation of in vitro matured MII oocytes and pronuclear zygotes. By highlighting the importance of proper translational regulation during in vitro oocyte maturation, this study should prompt further clinical investigations in the context of translation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Czech Grant Agency (22-27301S), Charles University Grant Agency (372621), Ministry of Education, Youth and Sports (EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE), and Institutional Research Concept RVO67985904. No competing interest is declared.
- MeSH
- choriogonadotropin farmakologie MeSH
- embryonální vývoj * fyziologie MeSH
- IVM techniky * MeSH
- kumulární buňky * metabolismus MeSH
- myši inbrední ICR * MeSH
- myši MeSH
- oocyty * metabolismus MeSH
- proteosyntéza MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- zygota metabolismus MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
- MeSH
- biogeneze organel MeSH
- genetická variace MeSH
- iniciace translace peptidového řetězce * MeSH
- kardiomegalie genetika metabolismus patologie MeSH
- krysa rodu rattus MeSH
- lokus kvantitativního znaku * MeSH
- malá jadérková RNA genetika metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- myokard metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- regulace genové exprese MeSH
- ribozomální proteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus patologie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sarkomery metabolismus patologie MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)-a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.
- MeSH
- jaderný obal genetika metabolismus MeSH
- meióza genetika MeSH
- myši MeSH
- oocyty růst a vývoj metabolismus MeSH
- polyribozomy genetika MeSH
- proteiny vázající RNA genetika MeSH
- RNA messenger skladovaná genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 28S genetika MeSH
- sekvenování transkriptomu MeSH
- vývojová regulace genové exprese genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ribosome biosynthesis, best studied in opisthokonts, is a highly complex process involving numerous protein and RNA factors. Yet, very little is known about the early stages of pre-18S rRNA processing even in these model organisms, let alone the conservation of this mechanism in other eukaryotes. Here we extend our knowledge of this process by identifying and characterizing the essential protein TbUTP10, a homolog of yeast U3 small nucleolar RNA-associated protein 10 - UTP10 (HEATR1 in human), in the excavate parasitic protist Trypanosoma brucei. We show that TbUTP10 localizes to the nucleolus and that its ablation by RNAi knock-down in two different T. brucei life cycle stages results in similar phenotypes: a disruption of pre-18S rRNA processing, exemplified by the accumulation of rRNA precursors, a reduction of mature 18S rRNA, and also a decrease in the level of U3 snoRNA. Moreover, polysome profiles of the RNAi-induced knock-down cells show a complete disappearance of the 40S ribosomal subunit, and a prominent accumulation of the 60S large ribosomal subunit, reflecting impaired ribosome assembly. Thus, TbUTP10 is an important protein in the processing of 18S rRNA.
- MeSH
- esenciální geny * MeSH
- malá jadérková RNA metabolismus MeSH
- posttranskripční úpravy RNA * MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA ribozomální 18S metabolismus MeSH
- Trypanosoma brucei brucei enzymologie metabolismus MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Studies in dynamic changes in protein translation require specialized methods. Here we examined changes in newly-synthesized proteins in response to ischemia and reperfusion using the isolated perfused mouse heart coupled with polysome profiling. To further understand the dynamic changes in protein translation, we characterized the mRNAs that were loaded with cytosolic ribosomes (polyribosomes or polysomes) and also recovered mitochondrial polysomes and compared mRNA and protein distribution in the high-efficiency fractions (numerous ribosomes attached to mRNA), low-efficiency (fewer ribosomes attached) which also included mitochondrial polysomes, and the non-translating fractions. miRNAs can also associate with mRNAs that are being translated, thereby reducing the efficiency of translation, we examined the distribution of miRNAs across the fractions. The distribution of mRNAs, miRNAs, and proteins was examined under basal perfused conditions, at the end of 30 min of global no-flow ischemia, and after 30 min of reperfusion. Here we present the methods used to accomplish this analysis-in particular, the approach to optimization of protein extraction from the sucrose gradient, as this has not been described before-and provide some representative results.
- MeSH
- messenger RNA genetika MeSH
- mikro RNA metabolismus MeSH
- myši MeSH
- polyribozomy metabolismus MeSH
- proteomika metody MeSH
- srdce růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.
- MeSH
- polyribozomy genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- proteomika metody MeSH
- pyl genetika růst a vývoj metabolismus MeSH
- pylová láčka genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- ribonukleoproteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stanovení celkové genové exprese metody MeSH
- tabák genetika růst a vývoj metabolismus MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
More than one 80S monosome can translate an mRNA molecule at a time producing polysomes. The most widely used method to separate 40S and 60S ribosomal subunits from 80S monosomes and polysomes is a high-velocity centrifugation of whole cell extracts in linear sucrose gradients. This polysome profile analysis technique has been routinely used to monitor translational fitness of cells under a variety of physiological conditions, to investigate functions of initiation factors involved in translation, to reveal defects in ribosome biogenesis, to determine roles of 5' UTR structures on mRNA translatability, and more recently for examination of miRNA-mediated translational repression (see an application of this protocol on Polysome analysis for determining mRNA and ribosome association in Saccharomyces cerevisiae).
Diamond-Blackfan anemia (DBA) is associated with developmental defects and profound anemia. Mutations in genes encoding a ribosomal protein of the small (e.g., RPS19) or large (e.g., RPL11) ribosomal subunit are found in more than half of these patients. The mutations cause ribosomal haploinsufficiency, which reduces overall translation efficiency of cellular mRNAs. We reduced the expression of Rps19 or Rpl11 in mouse erythroblasts and investigated mRNA polyribosome association, which revealed deregulated translation initiation of specific transcripts. Among these were Bag1, encoding a Hsp70 cochaperone, and Csde1, encoding an RNA-binding protein, and both were expressed at increased levels in erythroblasts. Their translation initiation is cap independent and starts from an internal ribosomal entry site, which appeared sensitive to knockdown of Rps19 or Rpl11. Mouse embryos lacking Bag1 die at embryonic day 13.5, with reduced erythroid colony forming cells in the fetal liver, and low Bag1 expression impairs erythroid differentiation in vitro. Reduced expression of Csde1 impairs the proliferation and differentiation of erythroid blasts. Protein but not mRNA expression of BAG1 and CSDE1 was reduced in erythroblasts cultured from DBA patients. Our data suggest that impaired internal ribosomal entry site-mediated translation of mRNAs expressed at increased levels in erythroblasts contributes to the erythroid phenotype of DBA.
- MeSH
- biologické markery * metabolismus MeSH
- buněčná diferenciace * MeSH
- Diamondova-Blackfanova anemie * genetika patologie MeSH
- DNA vazebné proteiny genetika metabolismus fyziologie MeSH
- embryo savčí cytologie metabolismus MeSH
- erytroblasty * cytologie metabolismus MeSH
- fenotyp MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- messenger RNA genetika metabolismus MeSH
- mutace genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- polyribozomy * genetika metabolismus patologie MeSH
- proliferace buněk MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- proteosyntéza * MeSH
- průtoková cytometrie MeSH
- ribozomální proteiny antagonisté a inhibitory genetika metabolismus MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory genetika metabolismus fyziologie MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
Velocity separation of translation complexes in linear sucrose gradients is the ultimate method for both analysis of the overall fitness of protein synthesis as well as for detailed investigation of physiological roles played by individual factors of the translational machinery. Polysome profile analysis is a frequently performed task in translational control research that not only enables direct monitoring of the efficiency of translation but can easily be extended with a wide range of downstream applications such as Northern and Western blotting, genome-wide microarray analysis or qRT-PCR. This chapter provides a basic overview of the polysome profile analysis technique and the RNA isolation procedure from sucrose gradients. We also discuss possible experimental pitfalls of data normalization, describe main alternatives of the basic protocol and outline a novel application of denaturing RNA electrophoresis in several steps of polysome profile analysis.
- MeSH
- centrifugace - gradient hustoty metody MeSH
- elektroforéza metody MeSH
- interpretace statistických dat MeSH
- kvasinky MeSH
- polyribozomy chemie MeSH
- proteosyntéza genetika MeSH
- regulace genové exprese genetika MeSH
- RNA izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH