Bisphenol S negatively affects the meotic maturation of pig oocytes
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28352085
PubMed Central
PMC5428703
DOI
10.1038/s41598-017-00570-5
PII: 10.1038/s41598-017-00570-5
Knihovny.cz E-resources
- MeSH
- Aromatase genetics MeSH
- Cell Differentiation drug effects genetics MeSH
- Phenols pharmacology MeSH
- Meiosis drug effects MeSH
- RNA, Messenger genetics MeSH
- Oocytes cytology drug effects metabolism MeSH
- Swine MeSH
- Receptors, Estrogen genetics MeSH
- Sulfones pharmacology MeSH
- Gene Expression Regulation, Developmental drug effects MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aromatase MeSH
- bisphenol S MeSH Browser
- Phenols MeSH
- RNA, Messenger MeSH
- Receptors, Estrogen MeSH
- Sulfones MeSH
Bisphenol A (BPA), a chemical component of plastics, is a widely distributed environmental pollutant and contaminant of water, air, and food that negatively impacts human health. Concerns regarding BPA have led to the use of BPA-free alternatives, one of which is bisphenol S (BPS). However, the effects of BPS are not well characterized, and its specific effects on reproduction and fertility remain unknown. It is therefore necessary to evaluate any effects of BPS on mammalian oocytes. The present study is the first to demonstrate the markedly negative effects of BPS on pig oocyte maturation in vitro, even at doses lower than those humans are exposed to in the environment. Our results demonstrate (1) an effect of BPS on the course of the meiotic cell cycle; (2) the failure of tubulin fibre formation, which controls proper chromosome movement; (3) changes in the supply of maternal mRNA; (4) changes in the protein amounts and distribution of oestrogen receptors α and β and of aromatase; and (5) disrupted cumulus cell expansion. Thus, these results confirm that BPS is an example of regrettable substitution because this substance exerts similar or even worse negative effects than those of the material it replaced.
See more in PubMed
Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101:378–384. doi: 10.1289/ehp.93101378. PubMed DOI PMC
Huang S, Hang Y. Simultaneous determination of bisphenol A and tetrabromobisphenol A in plastic products using high performance liquid chromatography-mass spectrometry. Se Pu. 2010;28:863–866. PubMed
Moriyama K, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002;87:5185–5190. doi: 10.1210/jc.2002-020209. PubMed DOI
Machtinger R, Orvieto R. Bisphenol A, oocyte maturation, implantation, and IVF outcome: review of animal and human data. Reproductive Biomedicine Online. 2014;29:404–410. doi: 10.1016/j.rbmo.2014.06.013. PubMed DOI
Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007-2016) Fertility and Sterility. 2016;106:827–856. doi: 10.1016/j.fertnstert.2016.06.027. PubMed DOI PMC
Peretz J, et al. Bisphenol A and Reproductive Health: Update of Experimental and Human Evidence, 2007–2013. Environmental Health Perspectives. 2014;122:775–786. PubMed PMC
Hunt PA, Susiarjo M, Rubio C, Hassold TJ. The bisphenol A experience: a primer for the analysis of environmental effects on mammalian reproduction. Biol Reprod. 2009;81:807–813. doi: 10.1095/biolreprod.109.077008. PubMed DOI PMC
Žalmanová T, et al. Bisphenol S instead of bisphenol A: a story of reproductive disruption by regretable substitution - a review. Czech Journal of Animal Sciences. 2016;61:433–449. doi: 10.17221/81/2015-CJAS. DOI
Acconcia, F., Pallottini, V. & Marino, M. Molecular Mechanisms of Action of BPA. Dose-Response13, doi: 10.1177/1559325815610582 (2015). PubMed PMC
Liao C, Liu F, Kannan K. Bisphenol s, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ Sci Technol. 2012;46:6515–6522. doi: 10.1021/es300876n. PubMed DOI
Liao C, Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem. 2013;61:4655–4662. doi: 10.1021/jf400445n. PubMed DOI
Wang W, et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ Int. 2015;83:183–191. doi: 10.1016/j.envint.2015.06.015. PubMed DOI
Michałowicz J, Mokra K, Bąk A. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study) Toxicol In Vitro. 2015;29:1464–1472. doi: 10.1016/j.tiv.2015.05.012. PubMed DOI
Kinch CD, Ibhazehiebo K, Jeong JH, Habibi HR, Kurrasch DM. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc Natl Acad Sci USA. 2015;112:1475–1480. doi: 10.1073/pnas.1417731112. PubMed DOI PMC
Zimmerman JB, Anastas PT. Toward designing safer chemicals. Science. 2015;347:215. doi: 10.1126/science.aaa6736. PubMed DOI
Liao CY, et al. Bisphenol S in Urine from the United States and Seven Asian Countries: Occurrence and Human Exposures. Environmental Science & Technology. 2012;46:6860–6866. doi: 10.1021/es301334j. PubMed DOI
Thayer KA, et al. Bisphenol A, Bisphenol S, and 4-Hydroxyphenyl 4-Isoprooxyphenyl sulfone (BPSIP) in Urine and Blood of Cashiers. Environ Health Perspect. 2016;124:437–444. PubMed PMC
Susor A, et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC
Wassarman PM. Fertilization in mammals. Sci Am. 1988;259:78–84. doi: 10.1038/scientificamerican1288-78. PubMed DOI
Kan R, et al. Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol. 2011;350:311–322. doi: 10.1016/j.ydbio.2010.11.033. PubMed DOI PMC
Singh B, Barbe GJ, Armstrong DT. Factors influencing resumption of meiotic maturation and cumulus expansion of porcine oocyte-cumulus cell complexes in vitro. Mol Reprod Dev. 1993;36:113–119. doi: 10.1002/mrd.1080360116. PubMed DOI
Mlynarcikova A, Nagyova E, Fickova M, Scsukova S. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicology in Vitro. 2009;23:371–377. doi: 10.1016/j.tiv.2008.12.017. PubMed DOI
Zhang Y, et al. Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle. 2014;13:3390–3403. doi: 10.4161/15384101.2014.952967. PubMed DOI PMC
Wang, T. et al. The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget, doi: 10.18632/oncotarget.8689 (2016). PubMed PMC
Krisher RL. In vivo and in vitro environmental effects on mammalian oocyte quality. Annu Rev Anim Biosci. 2013;1:393–417. doi: 10.1146/annurev-animal-031412-103647. PubMed DOI
Can A, Semiz O, Cinar O. Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol Hum Reprod. 2005;11:389–396. doi: 10.1093/molehr/gah179. PubMed DOI
Nakano K, et al. Comparison of the effects of BPA and BPAF on oocyte spindle assembly and polar body release in mice. Zygote. 2016;24:172–180. doi: 10.1017/S0967199415000027. PubMed DOI
Kitamura S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci. 2005;84:249–259. doi: 10.1093/toxsci/kfi074. PubMed DOI
Hunt PA, et al. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr Biol. 2003;13:546–553. doi: 10.1016/S0960-9822(03)00189-1. PubMed DOI
Eichenlaub-Ritter U, et al. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat Res. 2008;651:82–92. doi: 10.1016/j.mrgentox.2007.10.014. PubMed DOI
Beker AR, Colenbrander B, Bevers MM. Effect of 17beta-estradiol on the in vitro maturation of bovine oocytes. Theriogenology. 2002;58:1663–1673. doi: 10.1016/S0093-691X(02)01082-8. PubMed DOI
Beker-van Woudenberg AR, van Tol HT, Roelen BA, Colenbrander B, Bevers MM. Estradiol and its membrane-impermeable conjugate (estradiol-bovine serum albumin) during in vitro maturation of bovine oocytes: effects on nuclear and cytoplasmic maturation, cytoskeleton, and embryo quality. Biol Reprod. 2004;70:1465–1474. doi: 10.1095/biolreprod.103.025684. PubMed DOI
Grasselli F, et al. Bisphenol A disrupts granulosa cell function. Domest Anim Endocrinol. 2010;39:34–39. doi: 10.1016/j.domaniend.2010.01.004. PubMed DOI
vom Saal FS, Welshons WV. Endocrine disruptors: Manmade and natural oestrogens: opposite effects on assisted reproduction. Nat Rev Endocrinol. 2016;12:251–252. doi: 10.1038/nrendo.2016.38. PubMed DOI
Vandenberg LN, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455. doi: 10.1210/er.2011-1050. PubMed DOI PMC
Machtinger R, et al. Bisphenol-A and human oocyte maturation in vitro. Hum Reprod. 2013;28:2735–2745. doi: 10.1093/humrep/det312. PubMed DOI PMC
Crump D, Chiu S, Williams KL. Bisphenol S alters embryonic viability, development, gallbladder size, and messenger RNA expression in chicken embryos exposed via egg injection. Environ Toxicol Chem. 2016;35:1541–1549. doi: 10.1002/etc.3313. PubMed DOI
Ferris J, Mahboubi K, MacLusky N, King WA, Favetta LA. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reprod Toxicol. 2016;59:128–138. doi: 10.1016/j.reprotox.2015.12.002. PubMed DOI
Yu C, et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol. 2016;23:387–394. doi: 10.1038/nsmb.3204. PubMed DOI
Su YQ, et al. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol. 2007;302:104–117. doi: 10.1016/j.ydbio.2006.09.008. PubMed DOI PMC
Sun QY, Lai L, Bonk A, Prather RS, Schatten H. Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes: effects of gonadotropins, cumulus cells, follicular size, and protein synthesis inhibition. Mol Reprod Dev. 2001;59:192–198. doi: 10.1002/mrd.1022. PubMed DOI
Macaulay AD, et al. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation. Biol Reprod. 2016;94:16. PubMed PMC
La Rosa P, Pellegrini M, Totta P, Acconcia F, Marino M. Xenoestrogens alter estrogen receptor (ER) α intracellular levels. PLoS One. 2014;9:e88961. doi: 10.1371/journal.pone.0088961. PubMed DOI PMC
Goldinger DM, et al. Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regulatory Toxicology and Pharmacology. 2015;71:453–462. doi: 10.1016/j.yrtph.2015.01.002. PubMed DOI
Kuijk EW, et al. Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Dev Biol. 2007;7:58. doi: 10.1186/1471-213X-7-58. PubMed DOI PMC
Grignard E, Lapenna S, Bremer S. Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S. Toxicol In Vitro. 2012;26:727–731. doi: 10.1016/j.tiv.2012.03.013. PubMed DOI
Zhang X, Park H, Han SS, Kim JW, Jang CY. ERα regulates chromosome alignment and spindle dynamics during mitosis. Biochem Biophys Res Commun. 2015;456:919–925. doi: 10.1016/j.bbrc.2014.12.062. PubMed DOI
Alarid ET, Bakopoulos N, Solodin N. Proteasome-mediated proteolysis of estrogen receptor: A novel component in autologous down-regulation. Molecular Endocrinology. 1999;13:1522–1534. doi: 10.1210/mend.13.9.0337. PubMed DOI
Tschugguel W, et al. Differential regulation of proteasome-dependent estrogen receptor alpha and beta turnover in cultured human uterine artery endothelial cells. Journal of Clinical Endocrinology & Metabolism. 2003;88:2281–2287. doi: 10.1210/jc.2002-021165. PubMed DOI
Cheng GJ, et al. Differential regulation of estrogen receptor (ER)alpha and ER beta in primate mammary gland. Journal of Clinical Endocrinology & Metabolism. 2005;90:435–444. doi: 10.1210/jc.2004-0861. PubMed DOI
Tateishi Y, et al. Turning off estrogen receptor beta-mediated transcription requires estrogen-dependent receptor proteolysis. Molecular and Cellular Biology. 2006;26:7966–7976. doi: 10.1128/MCB.00713-06. PubMed DOI PMC
Nagyova E, Prochazka R, Vanderhyden BC. Oocytectomy does not influence synthesis of hyaluronic acid by pig cumulus cells: Retention of hyaluronic acid after insulin-like growth factor-I treatment in serum-free medium. Biology of Reproduction. 1999;61:569–574. doi: 10.1095/biolreprod61.3.569. PubMed DOI
Dragovic RA, et al. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005;146:2798–2806. doi: 10.1210/en.2005-0098. PubMed DOI
Marchal R, et al. Effect of growth hormone (GH) on in vitro nuclear and cytoplasmic clocyte maturation, cumulus expansion, hyaluronan synthases, and connexins 32 and 43 expression, and GH receptor messenger RNA expression in equine and porcine species. Biology of Reproduction. 2003;69:1013–1022. doi: 10.1095/biolreprod.103.015602. PubMed DOI
Yao GD, et al. MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Molecular and Cellular Endocrinology. 2014;382:244–253. doi: 10.1016/j.mce.2013.10.014. PubMed DOI
Motlik J, Fulka J, Fléchon JE. Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J Reprod Fertil. 1986;76:31–37. doi: 10.1530/jrf.0.0760031. PubMed DOI
Yi YJ, Sutovsky M, Song WH, Sutovsky P. Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reprod Fertil Dev. 2015;27:1154–1167. doi: 10.1071/RD14012. PubMed DOI
Nevoral J, et al. Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro. Nitric Oxide. 2015;51:24–35. doi: 10.1016/j.niox.2015.09.007. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Zámostná K, et al. A simple method for assessment of hyaluronic acid production by cumulus-oocyte complexes. Czech Journal of Animal Sciences. 2016;61:251–261. doi: 10.17221/51/2015-CJAS. DOI
Yang YJ, Guan J, Yin J, Shao B, Li H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere. 2014;112:481–486. doi: 10.1016/j.chemosphere.2014.05.004. PubMed DOI
Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility
Low doses of Bisphenol S affect post-translational modifications of sperm proteins in male mice
Metabolic cooperation in the ovarian follicle