Low doses of Bisphenol S affect post-translational modifications of sperm proteins in male mice
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-01-00544
Ministerstvo Zdravotnictví Ceské Republiky
LO1503
Ministerstvo Školství, Mládeže a Tělovýchovy
SW02690
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
Progress Q39
Univerzita Karlova v Praze
HBM4EU
H2020 European Research Council
PubMed
32466766
PubMed Central
PMC7254721
DOI
10.1186/s12958-020-00596-x
PII: 10.1186/s12958-020-00596-x
Knihovny.cz E-zdroje
- Klíčová slova
- Bisphenol S, Endocrine disruptor, Low dose effect, Male reproduction, Post-translational modification,
- MeSH
- acetylace účinky léků MeSH
- endokrinní disruptory farmakologie MeSH
- epigeneze genetická MeSH
- fenoly farmakologie MeSH
- fosforylace účinky léků MeSH
- myši MeSH
- poškození DNA účinky léků MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- spermie účinky léků MeSH
- sulfony farmakologie MeSH
- testis účinky léků patologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zrání spermie účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bisphenol S MeSH Prohlížeč
- endokrinní disruptory MeSH
- fenoly MeSH
- sulfony MeSH
BACKGROUND: Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on reproduction in male mice. METHODS: To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received 8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 μg/kg body weight (bw)/day, BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser desorption ionisation time-of-flight MS (MALDI-TOF MS). RESULTS: The results indicate that compared to vehicle, 100 μg/kg/day exposure (BPS3) leads to 1) significant histopathology in testicular tissue; and, 2) higher levels of the histone protein γH2AX, a reliable marker of DNA damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 μg/kg bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome and phosphorylome in mice treated with the lowest exposure (0.001 μg/kg/day; BPS1), although the dose is several times lower than what has been published so far. CONCLUSIONS: In summary, this range of qualitative and quantitative findings in young male mice raise the possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of sperm proteins.
Institute of Animal Science 10 Uhrineves Prague Czech Republic
SRC Biosciences and University of South Florida Tampa FL USA
Zobrazit více v PubMed
Siracusa Jacob Steven, Yin Lei, Measel Emily, Liang Shenuxan, Yu Xiaozhong. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reproductive Toxicology. 2018;79:96–123. doi: 10.1016/j.reprotox.2018.06.005. PubMed DOI PMC
Rosenmai Anna Kjerstine, Dybdahl Marianne, Pedersen Mikael, Alice van Vugt-Lussenburg Barbara Medea, Wedebye Eva Bay, Taxvig Camilla, Vinggaard Anne Marie. Are Structural Analogues to Bisphenol A Safe Alternatives? Toxicological Sciences. 2014;139(1):35–47. doi: 10.1093/toxsci/kfu030. PubMed DOI
Shi Mingxin, Sekulovski Nikola, MacLean James A, Whorton Allison, Hayashi Kanako. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicological Sciences. 2019;168(2):561–571. doi: 10.1093/toxsci/kfz014. PubMed DOI
Chen Da, Kannan Kurunthachalam, Tan Hongli, Zheng Zhengui, Feng Yong-Lai, Wu Yan, Widelka Margaret. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environmental Science & Technology. 2016;50(11):5438–5453. doi: 10.1021/acs.est.5b05387. PubMed DOI
Ullah Hizb, Jahan Sarwat, Ain Qurat Ul, Shaheen Ghazala, Ahsan Nida. Effect of bisphenol S exposure on male reproductive system of rats: A histological and biochemical study. Chemosphere. 2016;152:383–391. doi: 10.1016/j.chemosphere.2016.02.125. PubMed DOI
Ullah Asad, Pirzada Madeeha, Jahan Sarwat, Ullah Hizb, Shaheen Ghazala, Rehman Humaira, Siddiqui Mariyam Fatima, Butt Maisra Azhar. Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere. 2018;209:508–516. doi: 10.1016/j.chemosphere.2018.06.089. PubMed DOI
Nevoral Jan, Kolinko Yaroslav, Moravec Jiří, Žalmanová Tereza, Hošková Kristýna, Prokešová Šárka, Klein Pavel, Ghaibour Kamar, Hošek Petr, Štiavnická Miriama, Řimnáčová Hedvika, Tonar Zbyněk, Petr Jaroslav, Králíčková Milena. Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction. 2018;156(1):47–57. doi: 10.1530/REP-18-0092. PubMed DOI
Sidorkiewicz Iwona, Czerniecki Jan, Jarząbek Katarzyna, Zbucka-Krętowska Monika, Wołczyński Sławomir. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicology and Applied Pharmacology. 2018;359:1–11. doi: 10.1016/j.taap.2018.09.006. PubMed DOI
Ji Kyunghee, Hong Seongjin, Kho Younglim, Choi Kyungho. Effects of Bisphenol S Exposure on Endocrine Functions and Reproduction of Zebrafish. Environmental Science & Technology. 2013;47(15):8793–8800. doi: 10.1021/es400329t. PubMed DOI
Huang Wei, Zhao Chao, Zhong Huan, Zhang Shoudong, Xia Yiji, Cai Zongwei. Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7. Environmental Pollution. 2019;246:697–703. doi: 10.1016/j.envpol.2018.12.084. PubMed DOI
Pollard Sarah Hatch, Cox Kyley J., Blackburn Brenna E., Wilkins Diana G., Carrell Douglas T., Stanford Joseph B., Porucznik Christina A. Male exposure to bisphenol A (BPA) and semen quality in the Home Observation of Periconceptional Exposures (HOPE) cohort. Reproductive Toxicology. 2019;90:82–87. doi: 10.1016/j.reprotox.2019.08.014. PubMed DOI PMC
Lawrence Moyra, Daujat Sylvain, Schneider Robert. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends in Genetics. 2016;32(1):42–56. doi: 10.1016/j.tig.2015.10.007. PubMed DOI
Brohi Rahim Dad, Huo Li-Jun. Posttranslational Modifications in Spermatozoa and Effects on Male Fertility and Sperm Viability. OMICS: A Journal of Integrative Biology. 2017;21(5):245–256. doi: 10.1089/omi.2016.0173. PubMed DOI
Ritagliati C, Luque GM, Stival C, Baro Graf C, Buffone MG, Krapf D. Lysine acetylation modulates mouse sperm capacitation. Sci Rep. 2018. 10.1038/s41598-018-31557-5. PubMed PMC
Naz Rajesh K, Rajesh Preeti B. Reproductive Biology and Endocrinology. 2004;2(1):75. doi: 10.1186/1477-7827-2-75. PubMed DOI PMC
Rahman Md Saidur, Kwon Woo-Sung, Karmakar Polash Chandra, Yoon Sung-Jae, Ryu Buom-Yong, Pang Myung-Geol. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice. Environmental Health Perspectives. 2017;125(2):238–245. doi: 10.1289/EHP378. PubMed DOI PMC
Bachmanov Alexander A., Reed Danielle R., Beauchamp Gary K., Tordoff Michael G. Behavior Genetics. 2002;32(6):435–443. doi: 10.1023/A:1020884312053. PubMed DOI PMC
GUNDERSEN H. J. G., JENSEN E. B. V., KIEU K., NIELSEN J. The efficiency of systematic sampling in stereology - reconsidered. Journal of Microscopy. 1999;193(3):199–211. doi: 10.1046/j.1365-2818.1999.00457.x. PubMed DOI
Mouton PR. Principles and practices of unbiased stereology: an introduction for bioscientists. Baltimore: Johns Hopkins University Press; 2002. pp. 15–177.
Mouton PR. Unbiased stereology: a concise guide. Baltimore: Johns Hopkins University Press; 2011. pp. 15–32.
Lanning Lynda L., Creasy Dianne M., Chapin Robert E., Mann Peter C., Barlow Norman J., Regan Karen S., Goodman Dawn G. Recommended Approaches for the Evaluation of Testicular and Epididymal Toxicity. Toxicologic Pathology. 2002;30(4):507–520. doi: 10.1080/01926230290105695. PubMed DOI
Creasy Dianne M. Evaluation of testicular toxicology: A synopsis and discussion of the recommendations proposed by the Society of Toxicologic Pathology. Birth Defects Research Part B: Developmental and Reproductive Toxicology. 2003;68(5):408–415. doi: 10.1002/bdrb.10041. PubMed DOI
Kim J, Choi H, Lee H, Lee G, Hwang K, Choi K. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells. J Biomed Res. 2017. 10.7555/JBR.31.20160162. PubMed PMC
Žalmanová T, Hošková K, Nevoral J, Adámková K, Kott T, Šulc M, et al. Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci Rep. 2017. 10.1038/s41598-017-00570-5. PubMed PMC
Cao Lin-Ying, Ren Xiao-Min, Li Chuan-Hai, Zhang Jing, Qin Wei-Ping, Yang Yu, Wan Bin, Guo Liang-Hong. Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway. Environmental Science & Technology. 2017;51(19):11423–11430. doi: 10.1021/acs.est.7b03336. PubMed DOI
Vandenberg Laura N., Colborn Theo, Hayes Tyrone B., Heindel Jerrold J., Jacobs David R., Lee Duk-Hee, Shioda Toshi, Soto Ana M., vom Saal Frederick S., Welshons Wade V., Zoeller R. Thomas, Myers John Peterson. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews. 2012;33(3):378–455. doi: 10.1210/er.2011-1050. PubMed DOI PMC
O'Flaherty C. Phosphorylation of the Arginine-X-X-(Serine/Threonine) motif in human sperm proteins during capacitation: modulation and protein kinase A dependency. Molecular Human Reproduction. 2004;10(5):355–363. doi: 10.1093/molehr/gah046. PubMed DOI
Nakamura Noriko, Miranda-Vizuete Antonio, Miki Kiyoshi, Mori Chisato, Eddy Edward M. Cleavage of Disulfide Bonds in Mouse Spermatogenic Cell-Specific Type 1 Hexokinase Isozyme Is Associated with Increased Hexokinase Activity and Initiation of Sperm Motility1. Biology of Reproduction. 2008;79(3):537–545. doi: 10.1095/biolreprod.108.067561. PubMed DOI PMC
Mariappa D, Aladakatti RH, Dasari SK, Sreekumar A, Wolkowicz M, van der Hoorn F, et al. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein-2 and tektin-2, is associated with impaired motility during capacitation of hamster spermatozoa. Mol Reprod Dev. 2009. 10.1002/mrd.21131. PubMed
Olds-Clarke P, Pilder SH, Visconti PE, Moss SB, Orth JM, Kopf GS. Sperm from mice carrying twot haplotypes do not possess a tyrosine phosphorylated form of hexokinase. Mol Reprod Dev. 1996;43:94–104. doi: 10.1002/(SICI)1098-2795(199601)43:1<94::AID-MRD12>3.0.CO;2-4. PubMed DOI
Rahman MS, Kwon W-S, Lee J-S, Yoon S-J, Ryu B-Y, Pang M-G. Bisphenol-a affects male fertility via fertility-related proteins in spermatozoa. Sci Rep. 2015. 10.1038/srep09169. PubMed PMC
Brener Ephraim, Rubinstein Sara, Cohen Gili, Shternall Keren, Rivlin Joel, Breitbart Haim. Remodeling of the Actin Cytoskeleton During Mammalian Sperm Capacitation and Acrosome Reaction1. Biology of Reproduction. 2003;68(3):837–845. doi: 10.1095/biolreprod.102.009233. PubMed DOI
Ramió-Lluch L, Yeste M, Fernández-Novell JM, Estrada E, Rocha L, Cebrián-Pérez JA, et al. Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels. Reprod Fertil Dev. 2014. 10.1071/RD13145. PubMed
Liao Chunyang, Liu Fang, Alomirah Husam, Loi Vu Duc, Mohd Mustafa Ali, Moon Hyo-Bang, Nakata Haruhiko, Kannan Kurunthachalam. Bisphenol S in Urine from the United States and Seven Asian Countries: Occurrence and Human Exposures. Environmental Science & Technology. 2012;46(12):6860–6866. doi: 10.1021/es301334j. PubMed DOI
Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility