The bisphenol S contamination level observed in human follicular fluid affects the development of porcine oocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37091980
PubMed Central
PMC10115966
DOI
10.3389/fcell.2023.1145182
PII: 1145182
Knihovny.cz E-zdroje
- Klíčová slova
- aneuploidy, bisphenol S (BPS), embryonic development, endocrine disruption, follicular fluid (FF), meiosis, oocyte,
- Publikační typ
- časopisecké články MeSH
Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Biology of Reproduction Institute of Animal Science Prague Czechia
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czechia
Institute of Biology and Medical Genetics 1st Faculty of Medicine Charles University Prague Czechia
Zobrazit více v PubMed
Abeydeera L. R., Wang W. H., Prather R. S., Day B. N. (1998). Maturation in vitro of pig oocytes in protein-free culture media: Fertilization and subsequent embryo development in vitro . Biol. reproduction 58, 1316–1320. 10.1095/biolreprod58.5.1316 PubMed DOI
Amar S., Binet A., Téteau O., Desmarchais A., Papillier P., Lacroix M. Z., et al. (2020). Bisphenol S impaired human granulosa cell steroidogenesis in vitro . Int. J. Mol. Sci. 21, 1821. 10.3390/ijms21051821 PubMed DOI PMC
Bousoumah R., Leso V., Iavicoli I., Huuskonen P., Viegas S., Porras S. P., et al. (2021). Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review. Sci. Total Environ. 783, 146905. 10.1016/j.scitotenv.2021.146905 PubMed DOI
Campen K. A., Kucharczyk K. M., Bogin B., Ehrlich J. M., Combelles C. M. H. (2018). Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Hum. Reprod. 33, 895–904. 10.1093/humrep/dey050 PubMed DOI PMC
Carvalho K. F., Machado T. S., Garcia B. M., Zangirolamo A. F., Macabelli C. H., Sugiyama F. H. C., et al. (2020). Mitofusin 1 is required for oocyte growth and communication with follicular somatic cells. FASEB J. 34, 7644–7660. 10.1096/fj.201901761R PubMed DOI
Catenza C. J., Farooq A., Shubear N. S., Donkor K. K. (2021). A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 268, 129273. 10.1016/j.chemosphere.2020.129273 PubMed DOI
Colborn T., Vom Saal F. S., Soto A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101, 378–384. 10.1289/ehp.93101378 PubMed DOI PMC
Darghouthi M., Rezg R., Boughmadi O., Mornagui B. (2022). Low-dose bisphenol S exposure induces hypospermatogenesis and mitochondrial dysfunction in rats: A possible implication of StAR protein. Reprod. Toxicol. 107, 104–111. 10.1016/j.reprotox.2021.11.007 PubMed DOI
Desmarchais A., Téteau O., Kasal-Hoc N., Cognié J., Lasserre O., Papillier P., et al. (2022). Chronic low BPS exposure through diet impairs in vitro embryo production parameters according to metabolic status in the Ewe. Ecotoxicol. Environ. Saf. 229, 113096. 10.1016/j.ecoenv.2021.113096 PubMed DOI
Ding Z. M., Jiao X. F., Wu D., Zhang J. Y., Chen F., Wang Y. S., et al. (2017). Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem. Biol. Interact. 278, 222–229. 10.1016/j.cbi.2017.10.030 PubMed DOI
EFSA (European Food Safety Authority) (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 12, 1–89.
Eichenlaub-Ritter U., Vogt E., Cukurcam S., Sun F., Pacchierotti F., Parry J. (2008). Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat. Res. 651, 82–92. 10.1016/j.mrgentox.2007.10.014 PubMed DOI
Eladak S., Grisin T., Moison D., Guerquin M. J., N'Tumba-Byn T., Pozzi-Gaudin S., et al. (2015). A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 103, 11–21. 10.1016/j.fertnstert.2014.11.005 PubMed DOI
FDA (Food and Drug Administration, HHS). (2012). Indirect food additives: Polymers – 21 CFR Part 177, docket No. FDA – 2012 – F – 0031. Federal Register/No. 13/Rules and Regulations. 41899-41902. vol. 77.
Fontana J., Martínková S., Petr J., Žalmanová T., Trnka J. (2020). Metabolic cooperation in the ovarian follicle. Physiol. Res. 69, 33–48. 10.33549/physiolres.934233 PubMed DOI PMC
Frankowski R., Zgoła-Grześkowiak A., Grześkowiak T., Sójka K. (2020). The presence of bisphenol A in the thermal paper in the face of changing European regulations - a comparative global research. Environ. Pollut. 265, 114879. 10.1016/j.envpol.2020.114879 PubMed DOI
George O., Bryant B. K., Chinnasamy R., Corona C., Arterburn J. B., Shuster C. B. (2008). Bisphenol A directly targets tubulin to disrupt spindle organization in embryonic and somatic cells. ACS Chem. Biol. 3, 167–179. 10.1021/cb700210u PubMed DOI PMC
Goralczyk K. (2021). A review of the impact of selected anthropogenic chemicals from the group of endocrine disruptors on human health. Toxics 9, 146. 10.3390/toxics9070146 PubMed DOI PMC
Hodges C. A., Hunt P. A. (2002). Simultaneous analysis of chromosomes and chromosome-associated proteins in mammalian oocytes and embryos. Chromosoma 111, 165–169. 10.1007/s00412-002-0195-3 PubMed DOI
Huang S., Li J., Xu S., Zhao H., Li Y., Zhou Y., et al. (2019). Bisphenol A and bisphenol S exposures during pregnancy and gestational age - a longitudinal study in China. Chemosphere 237, 124426. 10.1016/j.chemosphere.2019.124426 PubMed DOI
Hunt P. A., Koehler K. E., Susiarjo M., Hodges C. A., Ilagan A., Voigt R. C., et al. (2003). Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 13, 546–553. 10.1016/s0960-9822(03)00189-1 PubMed DOI
Ješeta M., Franzová K., Machynová S., Kalina J., Kohoutek J., Mekiňová L., et al. (2022). The bisphenols found in the ejaculate of men does not pass through the testes. Toxics 10, 311. 10.3390/toxics10060311 PubMed DOI PMC
Jin H., Zhu J., Chen Z., Hong Y., et al. (2018). Occurrence and partitioning of bisphenol analogues in adults’ blood from China. Environ. Sci. Technol. 52, 812–820. 10.1021/acs.est.7b03958 PubMed DOI
Kansaku K., Itami N., Kawahara-Miki R., Shirasuna K., Kuwayama T., Iwata H. (2017). Differential effects of mitochondrial inhibitors on porcine granulosa cells and oocytes. Theriogenology 103, 98–103. 10.1016/j.theriogenology.2017.07.049 PubMed DOI
Li W., Franke A. A. (2015). Improvement of bisphenol A quantitation from urine by LCMS. Anal. Bioanal. Chem. 407, 3869–3874. 10.1007/s00216-015-8563-z PubMed DOI PMC
Liu J., Li J., Wu Y., Zhao Y., Luo F., Li S., et al. (2017). Bisphenol A metabolites and bisphenol S in paired maternal and cord serum. Environ. Sci. Technol. 51, 2456–2463. 10.1021/acs.est.6b05718 PubMed DOI
Ma J. Y., Li S., Chen L. N., Schatten H., Ou X. H., Sun Q. Y. (2020). Why is oocyte aneuploidy increased with maternal aging? J. Genet. Genomics 47, 659–671. 10.1016/j.jgg.2020.04.003 PubMed DOI
Machtinger R., Combelles C. M., Missmer S. A., Correia K. F., Williams P., Hauser R., et al. (2013). Bisphenol-A and human oocyte maturation in vitro . Hum. Reprod. 28, 2735–2745. 10.1093/humrep/det312 PubMed DOI PMC
Mao J., Jain A., Denslow N. D., Nouri M. Z., Chen S., Wang T., et al. (2020). Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc. Natl. Acad. Sci. U. S. A. 117, 4642–4652. 10.1073/pnas.1919563117 PubMed DOI PMC
Mordhorst B. R., Prather R. S. (2017). “Pig models of reproduction,” in Animal models and human reproduction. Editors Constantinescu G., Schatten H. (Hoboken, NJ: John Wiley and Sons; ), 213–234.
Mullen T. J., Davis-Roca A. C., Wignall S. M. (2019). Spindle assembly and chromosome dynamics during oocyte meiosis. Curr. Opin. Cell Biol. 60, 53–59. 10.1016/j.ceb.2019.03.014 PubMed DOI PMC
Nagaoka S. I., Hassold T. J., Hunt P. A. (2012). Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504. 10.1038/nrg3245 PubMed DOI PMC
Ndaw S., Remy A., Denis F., Marsan P., Jargot D., Robert A. (2018). Occupational exposure of cashiers to bisphenol S via thermal paper. Toxicol. Lett. 298, 106–111. 10.1016/j.toxlet.2018.05.026 PubMed DOI
Nevoral J., Havránková J., Kolinko Y., Prokešová Š., Fenclová T., Monsef L., et al. (2021). Exposure to alternative bisphenols BPS and BPF through breast milk: Noxious heritage effect during nursing associated with idiopathic infertility. Toxicol. Appl. Pharmacol. 413, 115409. 10.1016/j.taap.2021.115409 PubMed DOI
Nevoral J., Kolinko Y., Moravec J., Žalmanová T., Hošková K., Prokešová Š., et al. (2018). Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction 156, 47–57. 10.1530/rep-18-0092 PubMed DOI
Pan M. H., Wu Y. K., Liao B. Y., Zhang H., Li C., Wang J. L., et al. (2021). Bisphenol A exposure disrupts organelle distribution and functions during mouse oocyte maturation. Front. Cell Dev. Biol. 9, 661155. 10.3389/fcell.2021.661155 PubMed DOI PMC
Petro E. M., Leroy J. L., Covaci A., Fransen E., De Neubourg D., Dirtu A. C., et al. (2012). Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence. Hum. Reprod. 27, 1025–1033. 10.1093/humrep/der448 PubMed DOI
Poormoosavi S. M., Behmanesh M. A., Janati S., Najafzadehvarzi H. (2019). Level of bisphenol A in follicular fluid and serum and oocyte morphology in patients undergoing IVF treatment. J. Fam. Reprod. Health 13, 154–159. 10.18502/jfrh.v13i3.2129 PubMed DOI PMC
Prokešová Š., Ghaibour K., Liška F., Klein P., Fenclová T., Štiavnická M., et al. (2020). Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod. Toxicol. 93, 19–27. 10.1016/j.reprotox.2019.12.005 PubMed DOI
Qin J. Y., Ru S., Wang W., Hao L., Wei S., Zhang J., et al. (2021). Unraveling the mechanism of long-term bisphenol S exposure disrupted ovarian lipids metabolism, oocytes maturation, and offspring development of zebrafish. Chemosphere 277, 130304. 10.1016/j.chemosphere.2021.130304 PubMed DOI
Řimnáčová H., Štiavnická M., Moravec J., Chemek M., Kolinko Y., García-Álvarez O., et al. (2020). Low doses of Bisphenol S affect post-translational modifications of sperm proteins in male mice. Reproductive Biol. Endocrinol. 18, 56–10. 10.1186/s12958-020-00596-x PubMed DOI PMC
Rochester J. R., Bolden A. L. (2015). Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 123, 643–650. 10.1289/ehp.1408989 PubMed DOI PMC
Saleh A. C., Sabry R., Mastromonaco G. F., Favetta L. A. (2021). BPA and BPS affect the expression of Anti-Mullerian Hormone (AMH) and its receptor during bovine oocyte maturation and early embryo development. Reprod. Biol. Endocrinol. 19, 119. 10.1186/s12958-021-00773-6 PubMed DOI PMC
Smarr M. M., Kannan K., Sun L., Honda M., Wang W., Karthikraj R., et al. (2018). Preconception seminal plasma concentrations of endocrine disrupting chemicals in relation to semen quality parameters among male partners planning for pregnancy. Environ. Res. 167, 78–86. 10.1016/j.envres.2018.07.004 PubMed DOI
Susiarjo M., Hassold T. J., Freeman E., Hunt P. A. (2007). Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 3, e5. 10.1371/journal.pgen.0030005 PubMed DOI PMC
Tarkowski A. K. (1966). An air-drying method for chromosome preparations from mouse eggs. Cytogenet. Genome Res. 5, 394–400. 10.1159/000129914 DOI
Thayer K. A., Taylor K. W., Garantziotis S., Schurman S. H., Kissling G. E., Hunt D., et al. (2016). Bisphenol A, bisphenol S, and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) in urine and blood of cashiers. Environ. Health Perspect. 124, 437–444. 10.1289/ehp.1409427 PubMed DOI PMC
Togola A., Desmarchais A., Téteau O., Vignault C., Maillard V., Buron C., et al. (2021). Bisphenol S is present in culture media used for ART and cell culture. Hum. Reprod. 36, 1032–1042. 10.1093/humrep/deaa365 PubMed DOI PMC
Vandenberg L. N., Pelch K. E. (2021). Systematic review methodologies and endocrine disrupting chemicals: Improving evaluations of the plastic monomer bisphenol A. Endocr. Metab. Immune Disord. Drug Targets 22, 748–764. 10.2174/1871530321666211005163614 PubMed DOI
Vasiljevic T., Harner T. (2021). Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels. Sci. Total Environ. 789, 148013. 10.1016/j.scitotenv.2021.148013 PubMed DOI
Wang H., Liu Z. H., Tang Z., Zhang J., Yin H., Dang Z., et al. (2020). Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Sci. Total Environ. 713, 136583. 10.1016/j.scitotenv.2020.136583 PubMed DOI
Yang L., Baumann C., De La Fuente R., Viveiros M. M. (2020). Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds. Reproduction 159, 383–396. 10.1530/rep-19-0494 PubMed DOI PMC
Yoshioka K., Suzuki C., Tanaka A., Anas I. M. K., Iwamura S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. reproduction 66, 112–119. 10.1095/biolreprod66.1.112 PubMed DOI
Žalmanová T., Hošková K., Nevoral J., Adámková K., Kott T., Šulc M., et al. (2017). Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci. Rep. 7, 485. 10.1038/s41598-017-00570-5 PubMed DOI PMC
Zhang M., Bener M. B., Jiang Z., Wang T., Esencan E., Scott R., et al. (2019). Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging (Albany NY) 11, 3919–3938. 10.18632/aging.102024 PubMed DOI PMC
Zhang M Y M. Y., Tian Y., Yan Z. H., Li W. D., Zang C. J., Li L., et al. (2020). Maternal bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice. Environ. Pollut. 267, 115382. 10.1016/j.envpol.2020.115382 PubMed DOI
Zhang S. X., Ding Z. M., Ahmad M. J., Wang Y. S., Duan Z. Q., Miao Y. L., et al. (2020). Bisphenol B exposure disrupts mouse oocyte meiotic maturation in vitro through affecting spindle assembly and chromosome alignment. Front. Cell Dev. Biol. 8, 616771. 10.3389/fcell.2020.616771 PubMed DOI PMC