FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35481640
PubMed Central
PMC8994487
DOI
10.1002/pro.4287
Knihovny.cz E-zdroje
- Klíčová slova
- DNA binding, Forkhead box O 4, nuclear magnetic resonance, protein-protein interaction, senescence, transcription factor p53,
- MeSH
- DNA chemie MeSH
- forkhead transkripční faktory * chemie genetika metabolismus MeSH
- nádorový supresorový protein p53 * genetika metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- forkhead transkripční faktory * MeSH
- nádorový supresorový protein p53 * MeSH
- proteiny buněčného cyklu MeSH
Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.
Zobrazit více v PubMed
Wanner E, Thoppil H, Riabowol K. Senescence and apoptosis: Architects of mammalian development. Front Cell Dev Biol. 2020;8:620089. PubMed PMC
Yousefzadeh M, Henpita C, Vyas R, Soto‐Palma C, Robbins P, Niedernhofer L. DNA damage‐how and why we age? eLife. 2021;10:e62852. PubMed PMC
Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 2000;35:317–329. PubMed
Bourgeois B, Madl T. Regulation of cellular senescence via the FOXO4‐p53 axis. FEBS Lett. 2018;592:2083–2097. PubMed PMC
Stein GH, Drullinger LF, Soulard A, Dulic V. Differential roles for cyclin‐dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 1999;19:2109–2117. PubMed PMC
Boutelle AM, Attardi LD. p53 and tumor suppression: It takes a network. Trends Cell Biol. 2021;31:298–310. PubMed PMC
Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274:948–953. PubMed
Wei CL, Wu Q, Vega VB, et al. A global map of p53 transcription‐factor binding sites in the human genome. Cell. 2006;124:207–219. PubMed
Kearns S, Lurz R, Orlova EV, Okorokov AL. Two p53 tetramers bind one consensus DNA response element. Nucleic Acids Res. 2016;44:6185–6199. PubMed PMC
Natan E, Baloglu C, Pagel K, et al. Interaction of the p53 DNA‐binding domain with its n‐terminal extension modulates the stability of the p53 tetramer. J Mol Biol. 2011;409:358–368. PubMed PMC
Krois AS, Dyson HJ, Wright PE. Long‐range regulation of p53 DNA binding by its intrinsically disordered N‐terminal transactivation domain. Proc Natl Acad Sci U S A. 2018;115:E11302–E11310. PubMed PMC
He F, Borcherds W, Song T, et al. Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc Natl Acad Sci U S A. 2019;116:8859–8868. PubMed PMC
Gorina S, Pavletich NP. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science. 1996;274:1001–1005. PubMed
Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW. The DNA‐binding domain mediates both nuclear and cytosolic functions of p53. Nat Struct Mol Biol. 2014;21:535–543. PubMed PMC
Rustandi RR, Baldisseri DM, Weber DJ. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol. 2000;7:570–574. PubMed
Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell. 2002;10:523–535. PubMed
Mujtaba S, He Y, Zeng L, et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell. 2004;13:251–263. PubMed
Furuyama T, Nakazawa T, Nakano I, Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF‐16 homologues. Biochem J. 2000;349:629–634. PubMed PMC
Biggs WH 3rd, Cavenee WK, Arden KC. Identification and characterization of members of the FKHR (FOX O) subclass of winged‐helix transcription factors in the mouse. Mamm Genome. 2001;12:416–425. PubMed
Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin‐like growth factor‐binding protein‐1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999;274:17184–17192. PubMed
Wang F, Marshall CB, Ikura M. Forkhead followed by disordered tail: The intrinsically disordered regions of FOXO3a. Intrinsically Disord Proteins. 2015;3:e1056906. PubMed PMC
Hartlmuller C, Spreitzer E, Gobl C, Falsone F, Madl T. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins. J Biomol NMR. 2019;73:305–317. PubMed PMC
Saline M, Badertscher L, Wolter M, et al. AMPK and AKT protein kinases hierarchically phosphorylate the N‐terminus of the FOXO1 transcription factor, modulating interactions with 14‐3‐3 proteins. J Biol Chem. 2019;294:13106–13116. PubMed PMC
Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–868. PubMed
Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene. 2008;27:2263–2275. PubMed
Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27:2276–2288. PubMed
Naka K, Hoshii T, Muraguchi T, et al. TGF‐beta‐FOXO signalling maintains leukaemia‐initiating cells in chronic myeloid leukaemia. Nature. 2010;463:676–680. PubMed
Hagenbuchner J, Rupp M, Salvador C, et al. Nuclear FOXO3 predicts adverse clinical outcome and promotes tumor angiogenesis in neuroblastoma. Oncotarget. 2016;7:77591–77606. PubMed PMC
Hui RC, Francis RE, Guest SK, et al. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther. 2008;7:670–678. PubMed
Rupp M, Hagenbuchner J, Rass B, et al. FOXO3‐mediated chemo‐protection in high‐stage neuroblastoma depends on wild‐type TP53 and SESN3. Oncogene. 2017;36:6190–6203. PubMed PMC
Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead‐dependent pathway. Science. 2004;306:2105–2108. PubMed
Brunet A, Sweeney LB, Sturgill JF, et al. Stress‐dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–2015. PubMed
Wang F, Marshall CB, Yamamoto K, et al. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J Mol Biol. 2008;384:590–603. PubMed
You H, Yamamoto K, Mak TW. Regulation of transactivation‐independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci U S A. 2006;103:9051–9056. PubMed PMC
Miyaguchi Y, Tsuchiya K, Sakamoto K. P53 negatively regulates the transcriptional activity of FOXO3a under oxidative stress. Cell Biol Intl. 2009;33:853–860. PubMed
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169:132–147. PubMed PMC
Weigelt J, Climent I, Dahlman‐Wright K, Wikstrom M. Solution structure of the DNA binding domain of the human forkhead transcription factor AFX (FOXO4). Biochemistry. 2001;40:5861–5869. PubMed
Ozcelik D, Barandun J, Schmitz N, et al. Structures of pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin‐like modification pathway. Nat Commun. 2012;3:1014. PubMed PMC
Weinberg RL, Veprintsev DB, Fersht AR. Cooperative binding of tetrameric p53 to DNA. J Mol Biol. 2004;341:1145–1159. PubMed
Boura E, Rezabkova L, Brynda J, Obsilova V, Obsil T. Structure of the human FOXO4‐DBD‐DNA complex at 1.9 a resolution reveals new details of FOXO binding to the DNA. Acta Cryst D. 2010;66:1351–1357. PubMed
Kim J, Ahn D, Park CJ. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J. 2021. 10.1111/febs.16333. PubMed DOI
Wang D, Kon N, Tavana O, Gu W. The “readers” of unacetylated p53 represent a new class of acidic domain proteins. Nucleus. 2017;8:360–369. PubMed PMC
Spreitzer E, Usluer S, Madl T. Probing surfaces in dynamic protein interactions. J Mol Biol. 2020;432:2949–2972. PubMed
Weng J, Wang W. Dynamic multivalent interactions of intrinsically disordered proteins. Curr Opin Struct Biol. 2020;62:9–13. PubMed
Okorokov AL, Sherman MB, Plisson C, et al. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J. 2006;25:5191–5200. PubMed PMC
Zhang C, Xie Y, Chen H, et al. FOXO4‐DRI alleviates age‐related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging (Albany NY). 2020;12:1272–1284. PubMed PMC
Schuck P. Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78:1606–1619. PubMed PMC
Dam J, Velikovsky CA, Mariuzza RA, Urbanke C, Schuck P. Sedimentation velocity analysis of heterogeneous protein‐protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys J. 2005;89:619–634. PubMed PMC
Wong TS, Rajagopalan S, Freund SM, et al. Biophysical characterizations of human mitochondrial transcription factor a and its binding to tumor suppressor p53. Nucleic Acids Res. 2009;37:6765–6783. PubMed PMC
Weigelt J, Climent I, Dahlman‐Wright K, Wikstrom M. 1H, 13C and 15N resonance assignments of the DNA binding domain of the human forkhead transcription factor AFX. J Biomol NMR. 2000;17:181–182. PubMed
Lee W, Tonelli M, Markley JL. NMRFAM‐SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;31:1325–1327. PubMed PMC
Williamson MP. Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc. 2013;73:1–16. PubMed
Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR. 2009;44:213–223. PubMed PMC
Kitayner M, Rozenberg H, Kessler N, et al. Structural basis of DNA recognition by p53 tetramers. Mol Cell. 2006;22:741–753. PubMed