Lengthening the Guanidine-Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
I 3089
Austrian Science Fund FWF - Austria
PubMed
36188303
PubMed Central
PMC9521028
DOI
10.1021/acsomega.2c04613
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.
Department of Pediatrics 1 Medical University Innsbruck Innrain 66 Innsbruck 6020 Austria
Department of Pediatrics 2 Medical University Innsbruck Innrain 66 Innsbruck 6020 Austria
Zobrazit více v PubMed
Lam E. W.-F.; Brosens J. J.; Gomes A. R.; Koo C. Y. Forkhead box proteins: tuning forks for transcriptional harmony. Nat. Rev. Cancer 2013, 13, 482–495. 10.1038/nrc3539. PubMed DOI
Weigel D.; Jackle H. The Fork Head Domain - a Novel DNA-Binding Motif of Eukaryotic Transcription Factors. Cell 1990, 63, 455–456. 10.1016/0092-8674(90)90439-L. PubMed DOI
Kaestner K. H.; Knochel W.; Martinez D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000, 14, 142–146. 10.1101/gad.14.2.142. PubMed DOI
Furuyama T.; Nakazawa T.; Nakano I.; Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 2000, 349, 629–634. 10.1042/bj3490629. PubMed DOI PMC
Biggs W. H. III; CaveneeKaren C W. K. Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm. Genome 2001, 12, 416–425. 10.1007/s003350020002. PubMed DOI
Streeper R. S.; Svitek C. A.; Chapman S.; Greenbaum L. E.; Taub R.; O’Brien R. M. A multicomponent insulin response sequence mediates a strong repression of mouse glucose-6-phosphatase gene transcription by insulin. J. Biol. Chem. 1997, 272, 11698–11701. 10.1074/jbc.272.18.11698. PubMed DOI
van Doeselaar S.; Burgering B. M. T. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr. Top. Dev. Biol. 2018, 127, 49–103. 10.1016/bs.ctdb.2017.10.003. PubMed DOI
Brunet A.; Bonni A.; Zigmond M. J.; Lin M. Z.; Juo P.; Hu L. S.; Anderson M. J.; Arden K. C.; Blenis J.; Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96, 857–868. 10.1016/S0092-8674(00)80595-4. PubMed DOI
Cahill C. M.; Tzivion G.; Nasrin N.; Ogg S.; Dore J.; Ruvkun G.; Alexander-Bridges M. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J. Biol. Chem. 2001, 276, 13402–13410. 10.1074/jbc.M010042200. PubMed DOI
Obsil T.; Ghirlando R.; Anderson D. E.; Hickman A. B.; Dyda F. Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 2003, 42, 15264–15272. 10.1021/bi0352724. PubMed DOI
Zhao X.; Gan L.; Pan H.; Kan D.; Majeski M.; Adam S. A.; Unterman T. G. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem. J. 2004, 378, 839–849. 10.1042/bj20031450. PubMed DOI PMC
Brown A. K.; Webb A. E. Regulation of FOXO Factors in Mammalian Cells. Curr. Top. Dev. Biol. 2018, 127, 165–192. 10.1016/bs.ctdb.2017.10.006. PubMed DOI PMC
Naka K.; Hoshii T.; Muraguchi T.; Tadokoro Y.; Ooshio T.; Kondo Y.; Nakao S.; Motoyama N.; Hirao A. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010, 463, 676–680. 10.1038/nature08734. PubMed DOI
Rupp M.; Hagenbuchner J.; Rass B.; Fiegl H.; Kiechl-Kohlendorfer U.; Obexer P.; Ausserlechner M. J. FOXO3-mediated chemo-protection in high-stage neuroblastoma depends on wild-type TP53 and SESN3. Oncogene 2017, 36, 6190–6203. 10.1038/onc.2017.288. PubMed DOI PMC
Hagenbuchner J.; Rupp M.; Salvador C.; Meister B.; Kiechl-Kohlendorfer U.; Muller T.; Geiger K.; Sergi C.; Obexer P.; Ausserlechner M. J. Nuclear FOXO3 predicts adverse clinical outcome and promotes tumor angiogenesis in neuroblastoma. Oncotarget 2016, 7, 77591–77606. 10.18632/oncotarget.12728. PubMed DOI PMC
Calnan D. R.; Brunet A. The FoxO code. Oncogene 2008, 27, 2276–2288. 10.1038/onc.2008.21. PubMed DOI
Wilson M. S. C.; Brosens J. J.; Schwenen H. D. C.; Lam E. W.-F. FOXO and FOXM1 in cancer: the FOXO-FOXM1 axis shapes the outcome of cancer chemotherapy. Curr. Drug Targets 2011, 12, 1256–1266. 10.2174/138945011796150244. PubMed DOI
Marlow L. A.; von Roemeling C. A.; Cooper S. J.; Zhang Y.; Rohl S. D.; Arora S.; Gonzales I. M.; Azorsa D. O.; Reddi H. V.; Tun H. W.; et al. Foxo3a drives proliferation in anaplastic thyroid carcinoma through transcriptional regulation of cyclin A1: a paradigm shift that impacts current therapeutic strategies. J. Cell Sci. 2012, 125, 4253–4263. 10.1242/jcs.097428. PubMed DOI PMC
de Keizer P. L.; Burgering B. M.; Dansen T. B. Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid. Redox Signaling 2011, 14, 1093–1106. 10.1089/ars.2010.3403. PubMed DOI
Salcher S.; Hagenbuchner J.; Geiger K.; Seiter M. A.; Rainer J.; Kofler R.; Hermann M.; Kiechl-Kohlendorfer U.; Ausserlechner M. J.; Obexer P. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol. Cancer 2014, 13, 22410.1186/1476-4598-13-224. PubMed DOI PMC
Kerdiles Y. M.; Stone E. L.; Beisner D. R.; McGargill M. A.; Ch’en I. L.; Stockmann C.; Katayama C. D.; Hedrick S. M. Foxo transcription factors control regulatory T cell development and function. Immunity 2010, 33, 890–904. 10.1016/j.immuni.2010.12.002. PubMed DOI PMC
Harada Y.; Harada Y.; Elly C.; Ying G.; Paik J. H.; DePinho R. A.; Liu Y. C. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 2010, 207, 1381–1391. 10.1084/jem.20100004. PubMed DOI PMC
Maris J. M.; Hogarty M. D.; Bagatell R.; Cohn S. L. Neuroblastoma. Lancet 2007, 369, 2106–2120. 10.1016/S0140-6736(07)60983-0. PubMed DOI
Salcher S.; Spoden G.; Hagenbuchner J.; Fuhrer S.; Kaserer T.; Tollinger M.; Huber-Cantonati P.; Gruber T.; Schuster D.; Gust R.; et al. A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2020, 39, 1080–1097. 10.1038/s41388-019-1044-7. PubMed DOI PMC
Hagenbuchner J.; Obsilova V.; Kaserer T.; Kaiser N.; Rass B.; Psenakova K.; Docekal V.; Alblova M.; Kohoutova K.; Schuster D.; et al. Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. eLife 2019, 8, e4887610.7554/eLife.48876. PubMed DOI PMC
Aquino C. J.; Ramanjulu J. M.; Heyer D.; Daniels A. J.; Palazzo F.; Dezube M. Synthesis and structure activity relationship of guanidines as NPYY5 antagonists. Bioorg. Med. Chem. 2004, 12, 2691–2708. 10.1016/j.bmc.2004.03.012. PubMed DOI
Salcher S.; Hermann M.; Kiechl-Kohlendorfer U.; Ausserlechner M. J.; Obexer P. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol. Cancer 2017, 16, 9510.1186/s12943-017-0661-4. PubMed DOI PMC
Tsai K. L.; Sun Y. J.; Huang C. Y.; Yang J. Y.; Hung M. C.; Hsiao C. D. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res. 2007, 35, 6984–6994. 10.1093/nar/gkm703. PubMed DOI PMC
Wang F.; Marshall C. B.; Yamamoto K.; Li G. Y.; Plevin M. J.; You H.; Mak T. W.; Ikura M. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol. 2008, 384, 590–603. 10.1016/j.jmb.2008.09.025. PubMed DOI
Honorato R. V.; Koukos P. I.; Jimenez-Garcia B.; Tsaregorodtsev A.; Verlato M.; Giachetti A.; Rosato A.; Bonvin A. Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front. Mol. Biosci. 2021, 8, 72951310.3389/fmolb.2021.729513. PubMed DOI PMC
van Zundert G. C. P.; Rodrigues J.; Trellet M.; Schmitz C.; Kastritis P. L.; Karaca E.; Melquiond A. S. J.; van Dijk M.; de Vries S. J.; Bonvin A. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. 10.1016/j.jmb.2015.09.014. PubMed DOI
Psenakova K.; Kohoutova K.; Obsilova V.; Ausserlechner M. J.; Veverka V.; Obsil T. Forkhead Domains of FOXO Transcription Factors Differ in both Overall Conformation and Dynamics. Cells 2019, 8, 966.10.3390/cells8090966. PubMed DOI PMC
Baar M. P.; Brandt R. M. C.; Putavet D. A.; Klein J. D. D.; Derks K. W. J.; Bourgeois B. R. M.; Stryeck S.; Rijksen Y.; van Willigenburg H.; Feijtel D. A.; et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 2017, 169, 132–147 e116. 10.1016/j.cell.2017.02.031. PubMed DOI PMC
Kim J.; Ahn D.; Park C. J. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J. 2021, 289, 3163–3182. 10.1111/febs.16333. PubMed DOI
Mandal R.; Kohoutova K.; Petrvalska O.; Horvath M.; Srb P.; Veverka V.; Obsilova V.; Obsil T. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Protein Sci. 2022, 31, e428710.1002/pro.4287. PubMed DOI PMC
Hajduk P. J.; Huth J. R.; Fesik S. W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 2005, 48, 2518–2525. 10.1021/jm049131r. PubMed DOI
Radaeva M.; Ton A. T.; Hsing M.; Ban F.; Cherkasov A. Drugging the ’undruggable’. Therapeutic targeting of protein-DNA interactions with the use of computer-aided drug discovery methods. Drug Discovery Today 2021, 26, 2660–2679. 10.1016/j.drudis.2021.07.018. PubMed DOI
Bushweller J. H. Targeting transcription factors in cancer - from undruggable to reality. Nat. Rev. Cancer 2019, 19, 611–624. 10.1038/s41568-019-0196-7. PubMed DOI PMC
Gormally M. V.; Dexheimer T. S.; Marsico G.; Sanders D. A.; Lowe C.; Matak-Vinkovic D.; Michael S.; Jadhav A.; Rai G.; Maloney D. J.; et al. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition. Nat. Commun. 2014, 5, 516510.1038/ncomms6165. PubMed DOI PMC
Li H.; Ban F.; Dalal K.; Leblanc E.; Frewin K.; Ma D.; Adomat H.; Rennie P. S.; Cherkasov A. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J. Med. Chem. 2014, 57, 6458–6467. 10.1021/jm500802j. PubMed DOI
Huang W.; Dong Z.; Wang F.; Peng H.; Liu J. Y.; Zhang J. T. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem. Biol. 2014, 9, 1188–1196. 10.1021/cb500071v. PubMed DOI PMC
Infante P.; Mori M.; Alfonsi R.; Ghirga F.; Aiello F.; Toscano S.; Ingallina C.; Siler M.; Cucchi D.; Po A.; et al. Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J. 2015, 34, 200–217. 10.15252/embj.201489213. PubMed DOI PMC
Lee W.; Tonelli M.; Markley J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2015, 31, 1325–1327. 10.1093/bioinformatics/btu830. PubMed DOI PMC
Williamson M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1–16. 10.1016/j.pnmrs.2013.02.001. PubMed DOI