Structural plasticity of the FOXO-DBD:p53-TAD interaction
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-02080S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
RVO: 67985823
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
RVO: 6798582
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
296621
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
PubMed
40425537
PubMed Central
PMC12117093
DOI
10.1038/s41467-025-59106-5
PII: 10.1038/s41467-025-59106-5
Knihovny.cz E-zdroje
- MeSH
- forkhead transkripční faktory * metabolismus chemie genetika MeSH
- lidé MeSH
- nádorový supresorový protein p53 * metabolismus chemie genetika MeSH
- proteinové domény MeSH
- proteiny buněčného cyklu * metabolismus chemie MeSH
- simulace molekulární dynamiky MeSH
- transkripční faktory * metabolismus chemie genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- forkhead transkripční faktory * MeSH
- FOXO4 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 * MeSH
- proteiny buněčného cyklu * MeSH
- TP53 protein, human MeSH Prohlížeč
- transkripční faktory * MeSH
The transcription factors FOXO4 and p53 regulate aging, and their deregulation has been linked to several diseases, including cancer. Under stress conditions, cellular senescence is promoted by p53 sequestration and senescence-associated protein p21 transcriptional upregulation induced by interactions between the FOXO4 Forkhead DNA-binding domain and the p53 transactivation domain. However, the molecular details of these interactions remain unclear. Here, we report that these interactions between p53 and FOXO4 domains are highly heterogeneous. The p53 transactivation domain primarily interacts with the region formed by the N-terminal helical bundle of the FOXO4 Forkhead domain but retains a substantial degree of flexibility in the complex. In addition, NMR data-driven molecular simulations suggest that p53 interacts with FOXO4 through multiple binding modes. Overall, our findings not only provide the structural insights into interactions between FOXO4 and p53 but also highlight their potential as targets for developing senolytic compounds.
Zobrazit více v PubMed
Wanner, E., Thoppil, H. & Riabowol, K. Senescence and Apoptosis: Architects of Mammalian Development. Front. Cell Dev. Biol.8, 620089 (2020). PubMed PMC
Bringold, F. & Serrano, M. Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol.35, 317–329 (2000). PubMed
Bourgeois, B. & Madl, T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett.592, 2083–2097 (2018). PubMed PMC
Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell169, 132–147 (2017). PubMed PMC
Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J.349, 629–634 (2000). PubMed PMC
Guo, S. et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem.274, 17184–17192 (1999). PubMed
Weigel, D. & Jackle, H. The fork head domain - a novel DNA-binding motif of eukaryotic transcription factors. Cell63, 455–456 (1990). PubMed
Hartlmuller, C., Spreitzer, E., Gobl, C., Falsone, F. & Madl, T. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins. J. Biomol. NMR73, 305–317 (2019). PubMed PMC
de Keizer, P. L. et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res.70, 8526–8536 (2010). PubMed PMC
Qi, X. F. et al. FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J. Mol. Cell Cardiol.81, 114–126 (2015). PubMed
Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell14, 458–470 (2008). PubMed PMC
Obsil, T. & Obsilova, V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene27, 2263–2275 (2008). PubMed
Fernandez-Fernandez, M. R. & Sot, B. The relevance of protein-protein interactions for p53 function: the CPE contribution. Protein Eng. Des. Sel.24, 41–51 (2011). PubMed
Vousden, K. H. & Prives, C. Blinded by the light: The growing complexity of p53. Cell137, 413–431 (2009). PubMed
Oldfield, C. J. et al. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics9, S1 (2008). PubMed PMC
Chang, J., Kim, D. H., Lee, S. W., Choi, K. Y. & Sung, Y. C. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem.270, 25014–25019 (1995). PubMed
Teufel, D. P., Freund, S. M., Bycroft, M. & Fersht, A. R. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc. Natl. Acad. Sci. USA104, 7009–7014 (2007). PubMed PMC
Feng, H. et al. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure17, 202–210 (2009). PubMed PMC
Raj, N. & Attardi, L. D. The transactivation domains of the p53 protein. Cold Spring Harb. Perspect. Med.7, 10.1101/cshperspect.a026047 (2017). PubMed PMC
Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science274, 948–953 (1996). PubMed
Lee, C. W., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry49, 9964–9971 (2010). PubMed PMC
Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer4, 793–805 (2004). PubMed
Teufel, D. P., Bycroft, M. & Fersht, A. R. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene28, 2112–2118 (2009). PubMed PMC
Li, H. H., Li, A. G., Sheppard, H. M. & Liu, X. Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol. Cell13, 867–878 (2004). PubMed
Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell91, 325–334 (1997). PubMed
Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science306, 2105–2108 (2004). PubMed
Wang, F. et al. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol.384, 590–603 (2008). PubMed
Mandal, R. et al. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Protein Sci.31, e4287 (2022). PubMed PMC
Kim, J., Ahn, D. & Park, C. J. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J.289, 3163–3182 (2021). PubMed
Lenard, A. J., Mulder, F. A. A. & Madl, T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. Prog. Nucl. Magn. Reson Spectrosc.132-133, 113–139 (2022). PubMed
Madl, T., Guttler, T., Gorlich, D. & Sattler, M. Structural analysis of large protein complexes using solvent paramagnetic relaxation enhancements. Angew. Chem. Int. Ed. Engl.50, 3993–3997 (2011). PubMed
Wiedemann, C. et al. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex. Nucleic Acids Res.43, 2958–2967 (2015). PubMed PMC
Tomlinson, J. H., Thompson, G. S., Kalverda, A. P., Zhuravleva, A. & O’Neill, A. J. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Sci. Rep.6, 19524 (2016). PubMed PMC
Iwahara, J., Tang, C. & Marius Clore, G. Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Magn. Reson184, 185–195 (2007). PubMed PMC
Candau, R. et al. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene15, 807–816 (1997). PubMed
Dudas, E. F. et al. Tumor-suppressor p53TAD(1-60) forms a fuzzy complex with metastasis-associated S100A4: Structural insights and dynamics by an NMR/MD approach. Chembiochem21, 3087–3095 (2020). PubMed PMC
Psenakova, K. et al. Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells8, 966 (2019). PubMed PMC
Vacha, P. et al. Detailed kinetic analysis of the interaction between the FOXO4-DNA-binding domain and DNA. Biophys. Chem.184C, 68–78 (2013). PubMed
Tsai, K. L. et al. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res.35, 6984–6994 (2007). PubMed PMC
Brent, M. M., Anand, R. & Marmorstein, R. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure16, 1407–1416 (2008). PubMed PMC
Hagenbuchner, J. et al. Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. Elife8, 10.7554/elife.48876 (2019). PubMed PMC
Kohoutova, K. et al. Lengthening the guanidine-aryl linker of phenylpyrimidinylguanidines increases their potency as inhibitors of FOXO3-induced gene transcription. ACS Omega7, 34632–34646 (2022). PubMed PMC
Weigelt, J., Climent, I., Dahlman-Wright, K. & Wikstrom, M. 1H, 13 C and 15 N resonance assignments of the DNA binding domain of the human forkhead transcription factor AFX. J. Biomol. NMR17, 181–182 (2000). PubMed
Wong, T. S. et al. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res.37, 6765–6783 (2009). PubMed PMC
Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics31, 1325–1327 (2015). PubMed PMC
Williamson, M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc.73, 1–16 (2013). PubMed
Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS + : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR44, 213–223 (2009). PubMed PMC
Favier, A. & Brutscher, B. NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. J. Biomol. NMR73, 199–211 (2019). PubMed
Lee, D., Hilty, C., Wider, G. & Wuthrich, K. Effective rotational correlation times of proteins from NMR relaxation interference. J. Magn. Reson178, 72–76 (2006). PubMed
Simon, B., Madl, T., Mackereth, C. D., Nilges, M. & Sattler, M. An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Angew. Chem. Int. Ed. Engl.49, 1967–1970 (2010). PubMed
Battiste, J. L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry39, 5355–5365 (2000). PubMed
van Zundert, G. C. P. et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol.428, 720–725 (2016). PubMed
Lazar, T. et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res.49, D404–D411 (2021). PubMed PMC
Tesei, G. et al. DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles. PLoS Comput. Biol.17, e1008551 (2021). PubMed PMC
Webb, B. & Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Protein Sci.86, 2 9 1–2 9 37 (2016). PubMed
Srb, P. & Veverka, V. Zenodo. 10.5281/zenodo.13838563 (2024).