Structural plasticity of the FOXO-DBD:p53-TAD interaction

. 2025 May 27 ; 16 (1) : 4907. [epub] 20250527

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40425537

Grantová podpora
21-02080S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
RVO: 67985823 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
RVO: 6798582 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
296621 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)

Odkazy

PubMed 40425537
PubMed Central PMC12117093
DOI 10.1038/s41467-025-59106-5
PII: 10.1038/s41467-025-59106-5
Knihovny.cz E-zdroje

The transcription factors FOXO4 and p53 regulate aging, and their deregulation has been linked to several diseases, including cancer. Under stress conditions, cellular senescence is promoted by p53 sequestration and senescence-associated protein p21 transcriptional upregulation induced by interactions between the FOXO4 Forkhead DNA-binding domain and the p53 transactivation domain. However, the molecular details of these interactions remain unclear. Here, we report that these interactions between p53 and FOXO4 domains are highly heterogeneous. The p53 transactivation domain primarily interacts with the region formed by the N-terminal helical bundle of the FOXO4 Forkhead domain but retains a substantial degree of flexibility in the complex. In addition, NMR data-driven molecular simulations suggest that p53 interacts with FOXO4 through multiple binding modes. Overall, our findings not only provide the structural insights into interactions between FOXO4 and p53 but also highlight their potential as targets for developing senolytic compounds.

Zobrazit více v PubMed

Wanner, E., Thoppil, H. & Riabowol, K. Senescence and Apoptosis: Architects of Mammalian Development. Front. Cell Dev. Biol.8, 620089 (2020). PubMed PMC

Bringold, F. & Serrano, M. Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol.35, 317–329 (2000). PubMed

Bourgeois, B. & Madl, T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett.592, 2083–2097 (2018). PubMed PMC

Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell169, 132–147 (2017). PubMed PMC

Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J.349, 629–634 (2000). PubMed PMC

Guo, S. et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem.274, 17184–17192 (1999). PubMed

Weigel, D. & Jackle, H. The fork head domain - a novel DNA-binding motif of eukaryotic transcription factors. Cell63, 455–456 (1990). PubMed

Hartlmuller, C., Spreitzer, E., Gobl, C., Falsone, F. & Madl, T. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins. J. Biomol. NMR73, 305–317 (2019). PubMed PMC

de Keizer, P. L. et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res.70, 8526–8536 (2010). PubMed PMC

Qi, X. F. et al. FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J. Mol. Cell Cardiol.81, 114–126 (2015). PubMed

Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell14, 458–470 (2008). PubMed PMC

Obsil, T. & Obsilova, V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene27, 2263–2275 (2008). PubMed

Fernandez-Fernandez, M. R. & Sot, B. The relevance of protein-protein interactions for p53 function: the CPE contribution. Protein Eng. Des. Sel.24, 41–51 (2011). PubMed

Vousden, K. H. & Prives, C. Blinded by the light: The growing complexity of p53. Cell137, 413–431 (2009). PubMed

Oldfield, C. J. et al. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics9, S1 (2008). PubMed PMC

Chang, J., Kim, D. H., Lee, S. W., Choi, K. Y. & Sung, Y. C. Transactivation ability of p53 transcriptional activation domain is directly related to the binding affinity to TATA-binding protein. J. Biol. Chem.270, 25014–25019 (1995). PubMed

Teufel, D. P., Freund, S. M., Bycroft, M. & Fersht, A. R. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc. Natl. Acad. Sci. USA104, 7009–7014 (2007). PubMed PMC

Feng, H. et al. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure17, 202–210 (2009). PubMed PMC

Raj, N. & Attardi, L. D. The transactivation domains of the p53 protein. Cold Spring Harb. Perspect. Med.7, 10.1101/cshperspect.a026047 (2017). PubMed PMC

Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science274, 948–953 (1996). PubMed

Lee, C. W., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry49, 9964–9971 (2010). PubMed PMC

Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer4, 793–805 (2004). PubMed

Teufel, D. P., Bycroft, M. & Fersht, A. R. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene28, 2112–2118 (2009). PubMed PMC

Li, H. H., Li, A. G., Sheppard, H. M. & Liu, X. Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol. Cell13, 867–878 (2004). PubMed

Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell91, 325–334 (1997). PubMed

Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science306, 2105–2108 (2004). PubMed

Wang, F. et al. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol.384, 590–603 (2008). PubMed

Mandal, R. et al. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Protein Sci.31, e4287 (2022). PubMed PMC

Kim, J., Ahn, D. & Park, C. J. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J.289, 3163–3182 (2021). PubMed

Lenard, A. J., Mulder, F. A. A. & Madl, T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. Prog. Nucl. Magn. Reson Spectrosc.132-133, 113–139 (2022). PubMed

Madl, T., Guttler, T., Gorlich, D. & Sattler, M. Structural analysis of large protein complexes using solvent paramagnetic relaxation enhancements. Angew. Chem. Int. Ed. Engl.50, 3993–3997 (2011). PubMed

Wiedemann, C. et al. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex. Nucleic Acids Res.43, 2958–2967 (2015). PubMed PMC

Tomlinson, J. H., Thompson, G. S., Kalverda, A. P., Zhuravleva, A. & O’Neill, A. J. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Sci. Rep.6, 19524 (2016). PubMed PMC

Iwahara, J., Tang, C. & Marius Clore, G. Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Magn. Reson184, 185–195 (2007). PubMed PMC

Candau, R. et al. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene15, 807–816 (1997). PubMed

Dudas, E. F. et al. Tumor-suppressor p53TAD(1-60) forms a fuzzy complex with metastasis-associated S100A4: Structural insights and dynamics by an NMR/MD approach. Chembiochem21, 3087–3095 (2020). PubMed PMC

Psenakova, K. et al. Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells8, 966 (2019). PubMed PMC

Vacha, P. et al. Detailed kinetic analysis of the interaction between the FOXO4-DNA-binding domain and DNA. Biophys. Chem.184C, 68–78 (2013). PubMed

Tsai, K. L. et al. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res.35, 6984–6994 (2007). PubMed PMC

Brent, M. M., Anand, R. & Marmorstein, R. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure16, 1407–1416 (2008). PubMed PMC

Hagenbuchner, J. et al. Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. Elife8, 10.7554/elife.48876 (2019). PubMed PMC

Kohoutova, K. et al. Lengthening the guanidine-aryl linker of phenylpyrimidinylguanidines increases their potency as inhibitors of FOXO3-induced gene transcription. ACS Omega7, 34632–34646 (2022). PubMed PMC

Weigelt, J., Climent, I., Dahlman-Wright, K. & Wikstrom, M. 1H, 13 C and 15 N resonance assignments of the DNA binding domain of the human forkhead transcription factor AFX. J. Biomol. NMR17, 181–182 (2000). PubMed

Wong, T. S. et al. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res.37, 6765–6783 (2009). PubMed PMC

Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics31, 1325–1327 (2015). PubMed PMC

Williamson, M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc.73, 1–16 (2013). PubMed

Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS + : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR44, 213–223 (2009). PubMed PMC

Favier, A. & Brutscher, B. NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. J. Biomol. NMR73, 199–211 (2019). PubMed

Lee, D., Hilty, C., Wider, G. & Wuthrich, K. Effective rotational correlation times of proteins from NMR relaxation interference. J. Magn. Reson178, 72–76 (2006). PubMed

Simon, B., Madl, T., Mackereth, C. D., Nilges, M. & Sattler, M. An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Angew. Chem. Int. Ed. Engl.49, 1967–1970 (2010). PubMed

Battiste, J. L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry39, 5355–5365 (2000). PubMed

van Zundert, G. C. P. et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol.428, 720–725 (2016). PubMed

Lazar, T. et al. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res.49, D404–D411 (2021). PubMed PMC

Tesei, G. et al. DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles. PLoS Comput. Biol.17, e1008551 (2021). PubMed PMC

Webb, B. & Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Protein Sci.86, 2 9 1–2 9 37 (2016). PubMed

Srb, P. & Veverka, V. Zenodo. 10.5281/zenodo.13838563 (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...