Analysis of genome-wide knockout mouse database identifies candidate ciliopathy genes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
U42 OD011175
NIH HHS - United States
MC_UP_1503/1
Medical Research Council - United Kingdom
UM1 OD023221
NIH HHS - United States
MC_U142684172
Medical Research Council - United Kingdom
UM1 HG006370
NHGRI NIH HHS - United States
U54 HG006364
NHGRI NIH HHS - United States
R03 OD032622
NIH HHS - United States
MC_UP_1502/3
Medical Research Council - United Kingdom
K08 EY027463
NEI NIH HHS - United States
PubMed
36456625
PubMed Central
PMC9715561
DOI
10.1038/s41598-022-19710-7
PII: 10.1038/s41598-022-19710-7
Knihovny.cz E-zdroje
- MeSH
- cilie genetika MeSH
- ciliopatie * genetika MeSH
- databáze faktografické MeSH
- genový knockout MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny buněčného cyklu MeSH
- proteiny nervové tkáně MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny buněčného cyklu MeSH
- proteiny nervové tkáně MeSH
- WDR62 protein, mouse MeSH Prohlížeč
We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.
Centre National de la Recherche Scientifique UMR7104 Illkirch France
Comparative Pathology Laboratory U C Davis Davis 95616 USA
Covance Inc Chantilly VA 20151 USA
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX 77030 USA
Department of Surgery School of Medicine U C Davis Sacramento CA 95817 USA
Institut National de la Santé et de la Recherche Médicale U1258 Illkirch France
Lunenfeld Tanenbaum Research Institute Mount Sinai Hospital Toronto ON M5G 1X5 Canada
Medical Research Council Harwell Institute Harwell Campus Oxfordshire OX11 0RD UK
Mouse Biology Program U C Davis Davis CA 95618 USA
National Laboratory Animal Center National Applied Research Laboratories
National Laboratory Animal Center National Applied Research Laboratories Beijing China
RIKEN BioResource Center Tsukuba Ibaraki 305 0074 Japan
The Centre for Phenogenomics Toronto ON Canada
The Hospital for Sick Children 555 University Avenue Toronto ON M5G 1X8 Canada
The Jackson Laboratory Bar Harbor ME 04609 USA
The University of Miami Leonard M Miller School of Medicine Miami FL 33136 USA
The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SA UK
Université de Strasbourg 1 rue Laurent Fries 67404 Illkirch France
University of Reno Nevada School of Medicine Reno NV 89557 USA
Zobrazit více v PubMed
Waters AM, Beales PL. Ciliopathies: An expanding disease spectrum. Pediatr. Nephrol. 2011;26:1039–1056. doi: 10.1007/s00467-010-1731-7. PubMed DOI PMC
Bartoloni L, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl. Acad. Sci. U.S.A. 2002;99:10282–10286. doi: 10.1073/pnas.152337699. PubMed DOI PMC
Ichioka K, Kohei N, Okubo K, Nishiyama H, Terai A. Obstructive azoospermia associated with chronic sinopulmonary infection and situs inversus totalis. Urology. 2006;68:204.e5. doi: 10.1016/j.urology.2006.01.072. PubMed DOI
Inaba K, Mizuno K. Sperm dysfunction and ciliopathy. Reprod. Med. Biol. 2015;15:77–94. doi: 10.1007/s12522-015-0225-5. PubMed DOI PMC
Rosenfeld CS. Male reproductive tract cilia beat to a different drummer. Proc. Natl. Acad. Sci. U. S. A. 2019;116:3361–3363. doi: 10.1073/pnas.1900112116. PubMed DOI PMC
Eley L, Yates LM, Goodship JA. Cilia and disease. Curr. Opin. Genet. Dev. 2005;15:308–314. doi: 10.1016/j.gde.2005.04.008. PubMed DOI
Kathem SH, Mohieldin AM, Nauli SM. The roles of primary cilia in polycystic kidney disease. AIMS Mol. Sci. 2014;1:27–46. doi: 10.3934/molsci.2013.1.27. PubMed DOI PMC
Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell. 2009;137:32–45. doi: 10.1016/j.cell.2009.03.023. PubMed DOI PMC
den Hollander AI, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am. J. Hum. Genet. 2006;79:556–561. doi: 10.1086/507318. PubMed DOI PMC
Leitch CC, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat. Genet. 2008;40:443. doi: 10.1038/ng.97. PubMed DOI
Sayer JA, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 2006;38:674–681. doi: 10.1038/ng1786. PubMed DOI
Valente EM, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 2006;38:623–625. doi: 10.1038/ng1805. PubMed DOI
Chang B, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 2006;15:1847–1857. doi: 10.1093/hmg/ddl107. PubMed DOI PMC
Ware SM, Aygun MG, Hildebrandt F. Spectrum of clinical diseases caused by disorders of primary cilia. Proc. Am. Thorac. Soc. 2011;8:444–450. doi: 10.1513/pats.201103-025SD. PubMed DOI PMC
Boldt K, et al. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat. Commun. 2016;7:11491. doi: 10.1038/ncomms11491. PubMed DOI PMC
van Dam TJ, et al. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia. 2013;2:7. doi: 10.1186/2046-2530-2-7. PubMed DOI PMC
van Dam TJP, et al. CiliaCarta: An integrated and validated compendium of ciliary genes. bioRxiv. 2017 doi: 10.1101/123455. PubMed DOI PMC
Brown SDM, Moore MW. Towards an encyclopaedia of mammalian gene function: The International Mouse Phenotyping Consortium. Dis. Model. Mech. 2012;5:289–292. doi: 10.1242/dmm.009878. PubMed DOI PMC
Brown SDM, Moore MW. The International Mouse Phenotyping Consortium: Past and future perspectives on mouse phenotyping. Mamm. Genome. 2012;23:632–640. doi: 10.1007/s00335-012-9427-x. PubMed DOI PMC
Koscielny G, et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014;42:D802–D809. doi: 10.1093/nar/gkt977. PubMed DOI PMC
Karp NA, et al. Applying the ARRIVE guidelines to an in vivo database. PLoS Biol. 2015;13:e1002151–e1002151. doi: 10.1371/journal.pbio.1002151. PubMed DOI PMC
Kurbatova N, Mason JC, Morgan H, Meehan TF, Karp NA. PhenStat: A tool kit for standardized analysis of high throughput phenotypic data. PLoS ONE. 2015;10:e0131274–e0131274. doi: 10.1371/journal.pone.0131274. PubMed DOI PMC
Bisgrove BW, Yost HJ. The roles of cilia in developmental disorders and disease. Development. 2006;133:4131–4143. doi: 10.1242/dev.02595. PubMed DOI
Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017;18:533–547. doi: 10.1038/nrm.2017.60. PubMed DOI PMC
Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr. Respir. Rev. 2016;18:18–24. PubMed PMC
Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: From function to phenotypes. J. Pathol. 2017;241:294–309. doi: 10.1002/path.4843. PubMed DOI
Ronquillo CC, Bernstein PS, Baehr W. Senior-Loken syndrome: A syndromic form of retinal dystrophy associated with nephronophthisis. Vis. Res. 2012;75:88–97. doi: 10.1016/j.visres.2012.07.003. PubMed DOI PMC
Jin H, et al. The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell. 2010;141:1208–1219. doi: 10.1016/j.cell.2010.05.015. PubMed DOI PMC
Li J, et al. Sclt1 deficiency causes cystic kidney by activating ERK and STAT3 signaling. Hum. Mol. Genet. 2017;26:2949–2960. doi: 10.1093/hmg/ddx183. PubMed DOI
Arts HH, Knoers NVAM. Current insights into renal ciliopathies: What can genetics teach us? Pediatr. Nephrol. 2013;28:863–874. doi: 10.1007/s00467-012-2259-9. PubMed DOI PMC
Hildebrandt F, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 1997;17:149–153. doi: 10.1038/ng1097-149. PubMed DOI
Caridi G, et al. Renal-retinal syndromes: Association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am. J. Kidney Dis. 1998;32:1059–1062. doi: 10.1016/S0272-6386(98)70083-6. PubMed DOI
Parisi MA, et al. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am. J. Hum. Genet. 2004;75:82–91. doi: 10.1086/421846. PubMed DOI PMC
Jiang S-T, et al. Essential role of nephrocystin in photoreceptor intraflagellar transport in mouse. Hum. Mol. Genet. 2009;18:1566–1577. doi: 10.1093/hmg/ddp068. PubMed DOI
Adams NA, Awadein A, Toma HS. The retinal ciliopathies. Ophthalmic Genet. 2007;28:113–125. doi: 10.1080/13816810701537424. PubMed DOI
MacRae DW, Howard RO, Albert DM, Hsia YE. Ocular Manifestations of the meckel syndrome. Arch. Ophthalmol. 1972;88:106–113. doi: 10.1001/archopht.1972.01000030108028. PubMed DOI
Grove M, et al. ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Mol. Cell. Biol. 2004;24:10905–10922. doi: 10.1128/MCB.24.24.10905-10922.2004. PubMed DOI PMC
Albrecht NE, et al. Rapid and integrative discovery of retina regulatory molecules. Cell Rep. 2018;24:2506–2519. doi: 10.1016/j.celrep.2018.07.090. PubMed DOI PMC
Sugiyama Y, et al. Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Dev. Biol. 2010;338:193–201. doi: 10.1016/j.ydbio.2009.11.033. PubMed DOI PMC
Sugiyama Y, et al. Non-essential role for cilia in coordinating precise alignment of lens fibres. Mech. Dev. 2016;139:10–17. doi: 10.1016/j.mod.2016.01.003. PubMed DOI PMC
Girardet L, Augière C, Asselin M-P, Belleannée C. Primary cilia: Biosensors of the male reproductive tract. Andrology. 2019;7:588–602. PubMed
Yuan S, et al. Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc. Natl. Acad. Sci. 2019;116:3584–3593. doi: 10.1073/pnas.1817018116. PubMed DOI PMC
Moreno-De-Luca A, et al. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J. Med. Genet. 2011;48:141–144. doi: 10.1136/jmg.2010.082263. PubMed DOI PMC
Dell’Angelica EC, Mullins C, Bonifacino JS. AP-4, a novel protein complex related to clathrin adaptors. J. Biol. Chem. 1999;274:7278–7285. doi: 10.1074/jbc.274.11.7278. PubMed DOI
Coon BG, et al. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum. Mol. Genet. 2012;21:1835–1847. doi: 10.1093/hmg/ddr615. PubMed DOI
Jayaraman D, et al. Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron. 2016;92:813–828. doi: 10.1016/j.neuron.2016.09.056. PubMed DOI PMC
Zhou Y, et al. Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. PLoS Genet. 2018;14:e1007463. doi: 10.1371/journal.pgen.1007463. PubMed DOI PMC
Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA. Centrosomes and cilia in human disease. Trends Genet. 2011;27:307–315. doi: 10.1016/j.tig.2011.05.004. PubMed DOI PMC
Hoerner C, Stearns T. Remembrance of cilia past. Cell. 2013;155:271–273. doi: 10.1016/j.cell.2013.09.027. PubMed DOI
Kong S, et al. Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein. Cell Res. 2013;23:835–850. doi: 10.1038/cr.2013.59. PubMed DOI PMC
Cambridge EL, et al. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity. Exp. Hematol. 2017;45:64–68.e5. doi: 10.1016/j.exphem.2016.09.006. PubMed DOI PMC
Föller M, et al. Regulation of erythrocyte survival by AMP-activated protein kinase. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009;23:1072–1080. PubMed
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb. Perspect. Biol. 2017;9:a028274. doi: 10.1101/cshperspect.a028274. PubMed DOI PMC
Skarnes WC, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–342. doi: 10.1038/nature10163. PubMed DOI PMC
Percie du Sert N, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 2020;18:e3000411. doi: 10.1371/journal.pbio.3000411. PubMed DOI PMC
Moore BA, et al. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun. Biol. 2018;1:236. doi: 10.1038/s42003-018-0226-0. PubMed DOI PMC
Dickinson ME, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537:508–514. doi: 10.1038/nature19356. PubMed DOI PMC
Uchino S, Bellomo R, Goldsmith D. The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin. Kidney J. 2012;5:187–191. doi: 10.1093/ckj/sfs013. PubMed DOI PMC
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015;16:169. doi: 10.1186/s12859-015-0611-3. PubMed DOI PMC
Gherman A, Davis EE, Katsanis N. The ciliary proteome database: An integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 2006;38:961–962. doi: 10.1038/ng0906-961. PubMed DOI
Szklarczyk D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC
Rappaport N, et al. MalaCards: An integrated compendium for diseases and their annotation. Database (Oxford) 2013;2013:bat018. doi: 10.1093/database/bat018. PubMed DOI PMC