Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35283775
PubMed Central
PMC8908107
DOI
10.3389/fphys.2022.725442
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, bisphenol, idiopathic infertility, nursing exposure, spermatogenesis,
- Publikační typ
- časopisecké články MeSH
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
Zobrazit více v PubMed
Casanovas A., Ribas-Maynou J., Lara-Cerrillo S., Jimenez-Macedo A. R., Hortal O., Benet J., et al. (2019). Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates. Fertil. Steril. 111 699.e1–707.e1. PubMed
Chemek M., Nevoral J. (2019). The dark side of the breastfeeding: in the light of endocrine disruptors. Med. J. Cell Biol. 7 32–38. 10.2478/acb-2019-0005 DOI
Chemek M., Venditti M., Boughamoura S., Mimouna S. B., Messaoudi I., Minucci S. (2018). Involvement of testicular DAAM1 expression in zinc protection against cadmium-induced male rat reproductive toxicity. J. Cell Physiol. 233 630–640. 10.1002/jcp.25923 PubMed DOI
Chen D., Kannan K., Tan H., Zheng Z., Feng Y. L., Wu Y., et al. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-A review. Environ. Sci. Technol. 50 5438–5453. 10.1021/acs.est.5b05387 PubMed DOI
Cordelli E., Eleuteri P., Grollino M. G., Benassi B., Blandino G., Bartoleschi C., et al. (2012). Direct and delayed X-ray-induced DNA damage in male mouse germ cells. Environ. Mol. Mutagen. 53 429–439. 10.1002/em.21703 PubMed DOI
Danzl E., Sei K., Soda S., Ike M., Fujita M. (2009). Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int. J. Environ. Res. Public Health 6 1472–1484. 10.3390/ijerph6041472 PubMed DOI PMC
Derijck A., Van der Heijden G., Giele M., Philippens M., De Boer P. (2008). DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum. Mol. Genet. 17 1922–1937. 10.1093/hmg/ddn090 PubMed DOI
Derijck A. A. H. A., van der Heijden G. W., Giele M., Philippens M. E. P., van Bavel C. C. A. W., de Boer P. (2006). gammaH2AX signalling during sperm chromatin remodelling in the mouse zygote. DNA Repair 5 959–971. 10.1016/j.dnarep.2006.05.043 PubMed DOI
Dualde P., Pardo O., Corpas-Burgos F., Kuligowski J., Gormaz M., Vento M., et al. (2019). Biomonitoring of bisphenols A, F, S in human milk and probabilistic risk assessment for breastfed infants. Sci. Total Environ. 668 797–805. 10.1016/j.scitotenv.2019.03.024 PubMed DOI
EFSA Panel on Food Contact Materials, Enzymes, and Flavourings and Processing Aids [CEF] (2015). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 13:3978. 10.2903/j.efsa.2015.3978 DOI
Ehrlich S., Calafat A. M., Humblet O., Smith T., Hauser R. (2014). Handling of thermal receipts as a source of exposure to bisphenol A. JAMA 311 859–860. 10.1001/jama.2013.283735 PubMed DOI PMC
Eladak S., Grisin T., Moison D., Guerquin M. J., N’Tumba-Byn T., Pozzi-Gaudin S., et al. (2015). A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 103 11–21. 10.1016/j.fertnstert.2014.11.005 PubMed DOI
Ernst L., Ruchelli E., Huff D. (2011). Color Atlas of Fetal and Neonatal Histology. New York, NY: Springer-Verlag.
Evenson D., Jost L. (2001). Sperm chromatin structure assay for fertility assessment. Curr. Protoc. Cytom. 13 7–13. PubMed
Gawecka J. E., Marh J., Ortega M., Yamauchi Y., Ward M. A., Ward W. S. (2013). Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 8:e56385. 10.1371/journal.pone.0056385 PubMed DOI PMC
Glausiusz J. (2014). Toxicology: the plastics puzzle. Nature 508 306–308. 10.1038/508306a PubMed DOI
Godmann M., Auger V., Ferraroni-Aguiar V., Di Sauro A., Sette C., Behr R., et al. (2007). Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol. Reprod. 77 754–764. 10.1095/biolreprod.107.062265 PubMed DOI
González N., Marquès M., Cunha S. C., Fernandes J. O., Domingo J. L., Nadal M. (2020). Biomonitoring of co-exposure to bisphenols by consumers of canned foodstuffs. Environ. Int. 140:105760. 10.1016/j.envint.2020.105760 PubMed DOI
González-Marín C., Gosálvez J., Roy R. (2012). Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int. J. Mol. Sci. 13 14026–14052. 10.3390/ijms131114026 PubMed DOI PMC
Gys C., Ait Bamai Y., Araki A., Bastiaensen M., Caballero-Casero N., Kishi R., et al. (2020). Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. Environ. Res. 191:110172. 10.1016/j.envres.2020.110172 PubMed DOI
Ike M., Chen M. Y., Danzl E., Sei K., Fujita M. (2006). Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci. Technol. 53 153–159. 10.2166/wst.2006.189 PubMed DOI
Katz D. J., Edwards T. M., Reinke V., Kelly W. G. A. C. (2009). Elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137 308–320. 10.1016/j.cell.2009.02.015 PubMed DOI PMC
Kim E., Yamashita M., Kimura M., Honda A., Kashiwabara S. I., Baba T. (2008). Sperm penetration through cumulus mass and zona pellucida. Int. J. Dev. Biol. 52 677–682. 10.1387/ijdb.072528ek PubMed DOI
Kim J. H., Kim D., Moon S. M., Yang E. J. (2020). Associations of lifestyle factors with phthalate metabolites, bisphenol A, parabens, and triclosan concentrations in breast milk of Korean mothers. Chemosphere 249:126149. 10.1016/j.chemosphere.2020.126149 PubMed DOI
Kuo L. J., Yang L. X. (2008). γ-H2AX- A novel biomarker for DNA double-strand breaks. In Vivo 22 305–310. PubMed
Lambrot R., Siklenka K., Lafleur C., Kimmins S. (2019). The genomic distribution of histone H3K4me2 in spermatogonia is highly conserved in sperm. Biol. Reprod. 100 1661–1672. 10.1093/biolre/ioz055 PubMed DOI
Liao C., Kannan K. (2014). A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Addit. Contam. Part A 31 319–329. 10.1080/19440049.2013.868611 PubMed DOI
Liao C., Liu F., Alomirah H., Loi V. D., Mohd M. A., Moon H. B., et al. (2012a). Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environ. Sci. Technol. 46 6860–6866. 10.1021/es301334j PubMed DOI
Liao C., Liu F., Guo Y., Moon H. B., Nakata H., Wu Q., et al. (2012b). Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ. Sci. Technol. 46 9138–9145. 10.1021/es302004w PubMed DOI
Lovrien R., Matulis D. (2005). Assays for total protein. Curr. Protoc. Microbiol. Appendix 3:Aendix3A. 10.1002/9780471729259.mca03as00 PubMed DOI
Luo D., Pan Y., Zeng L., Du B., Li J., Mei S. (2021). Occurrence of multiple bisphenol S derivates in breast milk from Chinese Lactating women and implications for exposure in breastfed infants. Environ. Sci. Technol. Lett. 8 176–182. 10.1021/acs.estlett.0c00883 DOI
Matalová P., Urbánek K., Anzenbacher P. (2016). Specific features of pharmacokinetics in children. Drug Metab. Rev. 48 70–79. 10.3109/03602532.2015.1135941 PubMed DOI
Meng C., Liao J., Zhao D., Huang H., Qin J., Lee T. L., et al. (2019). L3MBTL2 regulates chromatin remodeling during spermatogenesis. Cell Death Differ. 26 2194–2207. 10.1038/s41418-019-0283-z PubMed DOI PMC
Middelkamp S., van Tol H. T. A., Spierings D. C. J., Boymans S., Guryev V., Roelen B. A. J., et al. (2020). Sperm DNA damage causes genomic instability in early embryonic development. Sci. Adv. 6:eaaz7602. 10.1126/sciadv.aaz7602 PubMed DOI PMC
Mok-Lin E., Ehrlich S., Williams P. L., Petrozza J., Wright D. L., Calafat A. M., et al. (2010). Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int. J. Androl. 33 385–393. 10.1111/j.1365-2605.2009.01014.x PubMed DOI PMC
Muñoz-de-Toro M., Markey C. M., Wadia P. R., Luque E. H., Rubin B. S., Sonnenschein C., et al. (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 146 4138–4147. 10.1210/en.2005-0340 PubMed DOI PMC
Nakata H., Wakayama T., Takai Y., Iseki S. (2015). Quantitative analysis of the cellular composition in seminiferous tubules in normal and genetically modified infertile mice. J. Histochem. Cytochem. 63 99–113. 10.1369/0022155414562045 PubMed DOI PMC
Nevoral J., Havránková J., Kolinko Y., Prokešová Š, Fenclová T., Monsef L., et al. (2021). Exposure to alternative bisphenols BPS and BPF through breast milk: noxious heritage effect during nursing associated with idiopathic infertility. Toxicol. Appl. Pharmacol. 413:115409. 10.1016/j.taap.2021.115409 PubMed DOI
Nevoral J., Kolinko Y., Moravec J., Žalmanová T., Hošková K., Prokešová Š, et al. (2018). Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction 156 47–57. 10.1530/REP-18-0092 PubMed DOI
Olsen A. K., Lindeman B., Wiger R., Duale N., Brunborg G. (2005). How do male germ cells handle DNA damage? Toxicol. Appl. Pharmacol. 207 521–531. 10.1016/j.taap.2005.01.060 PubMed DOI
Olson B. J., Markwell J. (2016). Assays for determination of protein concentration. Curr. Protoc. Pharmacol. 73 A–3A. PubMed
Prokešová Š, Ghaibour K., Liška F., Klein P., Fenclová T., Štiavnická M., et al. (2020). al. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod. Toxicol. 93 19–27. 10.1016/j.reprotox.2019.12.005 PubMed DOI
Rahman M. S., Kwon W. S., Karmakar P. C., Yoon S. J., Ryu B. Y., Pang M. G. (2017). Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ. Health Perspect. 125 238–245. 10.1289/EHP378 PubMed DOI PMC
Rahman M. S., Kwon W. S., Lee J. S., Yoon S. J., Ryu B. Y., Pang M. G. (2015). Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci. Rep. 5:9169. 10.1038/srep09169 PubMed DOI PMC
Rajabi H., Mohseni-Kouchesfehani H., Eslami-Arshaghi T., Salehi M. (2018). Sperm DNA fragmentation affects epigenetic feature in human male pronucleus. Andrologia 50 1–7. 10.1111/and.12800 PubMed DOI
Řimnáčová H., Štiavnická M., Moravec J., Chemek M., Kolinko Y., García-Álvarez O., et al. (2020). Low doses of bisphenol S affect post-translational modifications of sperm proteins in male mice. Reprod. Biol. Endocrinol. 18:56. 10.1186/s12958-020-00596-x PubMed DOI PMC
Rivera O. E., Varayoud J., Rodríguez H. A., Santamaría C. G., Bosquiazzo V. L., Osti M., et al. (2015). Neonatal exposure to xenoestrogens impairs the ovarian response to gonadotropin treatment in lambs. Reproduction 149 645–655. 10.1530/REP-14-0567 PubMed DOI
Salian S., Doshi T., Vanage G. (2011). Perinatal exposure of rats to bisphenol A affects fertility of male offspring–An overview. Reprod. Toxicol. 31 359–362. 10.1016/j.reprotox.2010.10.008 PubMed DOI
Sedó C. A., Bilinski M., Lorenzi D., Uriondo H., Noblía F., Longobucco V., et al. (2017). Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist. Reprod. 21 343–350. 10.5935/1518-0557.20170061 PubMed DOI PMC
Sharma A., Singh K., Almasan A. (2012). Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol. Biol. 920 613–626. 10.1007/978-1-61779-998-3_40 PubMed DOI
Shi M., Sekulovski N., MacLean J. A., Hayashi K. (2017). Effects of bisphenol A analogues on reproductive functions in mice. Reprod. Toxicol. 73 280–291. 10.1016/j.reprotox.2017.06.134 PubMed DOI
Shi M., Sekulovski N., MacLean J. A., Hayashi K. (2018). Prenatal exposure to bisphenol A analogues on male reproductive functions in mice. Toxicol. Sci. 163 620–631. 10.1093/toxsci/kfy061 PubMed DOI
Shi M., Whorton A. E., Sekulovski N., MacLean J. A., Hayashi K. (2019). Prenatal exposure to bisphenol A, E, and S induces transgenerational effects on male reproductive functions in mice. Toxicol. Sci. 172 303–315. 10.1093/toxsci/kfz207 PubMed DOI
Simoneau C., Valzacchi S., Morkunas V., van den Eede L. (2011). Comparison of migration from polyethersulphone and polycarbonate baby bottles. Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess. 28 1763–1768. 10.1080/19440049.2011.604644 PubMed DOI
Siracusa J. S., Yin L., Measel E., Liang S., Yu X. (2018). Effects of bisphenol A and its analogs on reproductive health: a mini review. Reprod. Toxicol. 79 96–123. 10.1016/j.reprotox.2018.06.005 PubMed DOI PMC
Štiavnická M., García-Álvarez O., Ulčová-Gallová Z., Sutovsky P., Abril-Parreño L., Dolejšová M., et al. (2020). H3K4me2 accompanies chromatin immaturity in human spermatozoa: an epigenetic marker for sperm quality assessment. Syst. Biol. Reprod. Med. 66 3–11. 10.1080/19396368.2019.1666435 PubMed DOI
Stitzel M. L., Seydoux G. (2007). Regulation of the oocyte-to-zygote transition. Science 316 407–408. 10.1126/science.1138236 PubMed DOI
Sutovsky P., Schatten G. (2000). Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int. Rev. Cytol. 195 1–65. 10.1016/s0074-7696(08)62703-5 PubMed DOI
Svoboda P. (2018). Mammalian zygotic genome activation. Semin. Cell Dev. Biol. 84 118–126. PubMed
Tesarik J. (2005). Paternal effects on cell division in the human preimplantation embryo. Reprod. Biomed. Online 10 370–375. 10.1016/s1472-6483(10)61798-1 PubMed DOI
Turinetto V., Orlando L., Sanchez-Ripoll Y., Kumpfmueller B., Storm M. P., Porcedda P., et al. (2012). High basal γH2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. Stem Cells 30 1414–1423. 10.1002/stem.1133 PubMed DOI
Ullah A., Pirzada M., Jahan S., Ullah H., Khan M. J. (2019). Bisphenol A analogues bisphenol B, bisphenol F, and bisphenol S induce oxidative stress, disrupt daily sperm production, and damage DNA in rat spermatozoa: a comparative in vitro and in vivo study. Toxicol. Ind. Health 35 294–303. 10.1177/0748233719831528 PubMed DOI
Ullah A., Pirzada M., Jahan S., Ullah H., Shaheen G., Rehman H., et al. (2018). Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere 209 508–516. 10.1016/j.chemosphere.2018.06.089 PubMed DOI
Vandenberg L. N., Chahoud I., Heindel J. J., Padmanabhan V., Paumgartten F. J. R., Schoenfelder G. (2010). Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 118 1055–1070. 10.1289/ehp.0901716 PubMed DOI PMC
Vandenberg L. N., Colborn T., Hayes T. B., Heindel J. J., Jacobs D. R., Lee D. H., et al. (2012). Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr. Rev. 33 378–455. 10.1210/er.2011-1050 PubMed DOI PMC
Vandenberg L. N., Hauser R., Marcus M., Olea N., Welshons W. V. (2007). Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24 139–177. PubMed
Ventelä S., Ohta H., Parvinen M., Nishimune Y. (2002). Development of the stages of the cycle in mouse seminiferous epithelium after transplantation of green fluorescent protein-labeled spermatogonial stem cells. Biol. Reprod. 66 1422–1429. 10.1095/biolreprod66.5.1422 PubMed DOI
Viñas P., Campillo N., Martínez-Castillo N., Hernández-Córdoba M. (2010). Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. In Anal. Bioanal. Chem. 397 115–125. 10.1007/s00216-010-3464-7 PubMed DOI
Wang S., Meyer D. H., Schumacher B. (2020). H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat. Struct. Mol. Biol. 27 1165–1177. 10.1038/s41594-020-00513-1 PubMed DOI
Wong K. H., Durrani T. S. (2017). Exposures to endocrine disrupting chemicals in consumer products-A guide for pediatricians. Curr. Probl. Pediatr. Adolesc. Health Care 47 107–118. 10.1016/j.cppeds.2017.04.002 PubMed DOI
Wu L. H., Zhang X. M., Wang F., Gao C. J., Chen D., Palumbo J. R., et al. (2018). Occurrence of bisphenol S in the environment and implications for human exposure: a short review. Sci. Total Environ. 615 87–98. 10.1016/j.scitotenv.2017.09.194 PubMed DOI
Wyck S., Herrera C., Requena C. E., Bittner L., Hajkova P., Bollwein H., et al. (2018). Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development 06 0604 11 medical and health sciences 1114 paediatrics and reproductive medicine 06 biological sciences 0601 Biochemistry and Cell. Epigenetics Chromatin 11:60. 10.1186/s13072-018-0224-y PubMed DOI PMC
Žalmanová T., Hošková K., Nevoral J., Adámková K., Kott T., Šulc M., et al. (2017). Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci. Rep. 7:485. 10.1038/s41598-017-00570-5 PubMed DOI PMC
Žalmanová T., Hošková K., Nevoral J., Prokešová Š, Zámostná K., Kott T., et al. (2016). Bisphenol S instead of bisphenol A: a story of reproductive disruption by regretable substitution – A review. Czech J. Anim. Sci. 61 433–449.
Zhang J., Parvin J., Huang K. (2012). Redistribution of H3K4me2 on neural tissue specific genes during mouse brain development. BMC Genomics 13:S5. 10.1186/1471-2164-13-S8-S5 PubMed DOI PMC
CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos