Nursing Exposure to Bisphenols as a Cause of Male Idiopathic Infertility
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35283775
PubMed Central
PMC8908107
DOI
10.3389/fphys.2022.725442
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, bisphenol, idiopathic infertility, nursing exposure, spermatogenesis,
- Publikační typ
- časopisecké články MeSH
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
Zobrazit více v PubMed
Casanovas A., Ribas-Maynou J., Lara-Cerrillo S., Jimenez-Macedo A. R., Hortal O., Benet J., et al. (2019). Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates. PubMed
Chemek M., Nevoral J. (2019). The dark side of the breastfeeding: in the light of endocrine disruptors. DOI
Chemek M., Venditti M., Boughamoura S., Mimouna S. B., Messaoudi I., Minucci S. (2018). Involvement of testicular DAAM1 expression in zinc protection against cadmium-induced male rat reproductive toxicity. PubMed DOI
Chen D., Kannan K., Tan H., Zheng Z., Feng Y. L., Wu Y., et al. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-A review. PubMed DOI
Cordelli E., Eleuteri P., Grollino M. G., Benassi B., Blandino G., Bartoleschi C., et al. (2012). Direct and delayed X-ray-induced DNA damage in male mouse germ cells. PubMed DOI
Danzl E., Sei K., Soda S., Ike M., Fujita M. (2009). Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. PubMed DOI PMC
Derijck A., Van der Heijden G., Giele M., Philippens M., De Boer P. (2008). DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. PubMed DOI
Derijck A. A. H. A., van der Heijden G. W., Giele M., Philippens M. E. P., van Bavel C. C. A. W., de Boer P. (2006). gammaH2AX signalling during sperm chromatin remodelling in the mouse zygote. PubMed DOI
Dualde P., Pardo O., Corpas-Burgos F., Kuligowski J., Gormaz M., Vento M., et al. (2019). Biomonitoring of bisphenols A, F, S in human milk and probabilistic risk assessment for breastfed infants. PubMed DOI
EFSA Panel on Food Contact Materials, Enzymes, and Flavourings and Processing Aids [CEF] (2015). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. DOI
Ehrlich S., Calafat A. M., Humblet O., Smith T., Hauser R. (2014). Handling of thermal receipts as a source of exposure to bisphenol A. PubMed DOI PMC
Eladak S., Grisin T., Moison D., Guerquin M. J., N’Tumba-Byn T., Pozzi-Gaudin S., et al. (2015). A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. PubMed DOI
Ernst L., Ruchelli E., Huff D. (2011).
Evenson D., Jost L. (2001). Sperm chromatin structure assay for fertility assessment. PubMed
Gawecka J. E., Marh J., Ortega M., Yamauchi Y., Ward M. A., Ward W. S. (2013). Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PubMed DOI PMC
Glausiusz J. (2014). Toxicology: the plastics puzzle. PubMed DOI
Godmann M., Auger V., Ferraroni-Aguiar V., Di Sauro A., Sette C., Behr R., et al. (2007). Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. PubMed DOI
González N., Marquès M., Cunha S. C., Fernandes J. O., Domingo J. L., Nadal M. (2020). Biomonitoring of co-exposure to bisphenols by consumers of canned foodstuffs. PubMed DOI
González-Marín C., Gosálvez J., Roy R. (2012). Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. PubMed DOI PMC
Gys C., Ait Bamai Y., Araki A., Bastiaensen M., Caballero-Casero N., Kishi R., et al. (2020). Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. PubMed DOI
Ike M., Chen M. Y., Danzl E., Sei K., Fujita M. (2006). Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. PubMed DOI
Katz D. J., Edwards T. M., Reinke V., Kelly W. G. A. C. (2009). Elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. PubMed DOI PMC
Kim E., Yamashita M., Kimura M., Honda A., Kashiwabara S. I., Baba T. (2008). Sperm penetration through cumulus mass and zona pellucida. PubMed DOI
Kim J. H., Kim D., Moon S. M., Yang E. J. (2020). Associations of lifestyle factors with phthalate metabolites, bisphenol A, parabens, and triclosan concentrations in breast milk of Korean mothers. PubMed DOI
Kuo L. J., Yang L. X. (2008). γ-H2AX- A novel biomarker for DNA double-strand breaks. PubMed
Lambrot R., Siklenka K., Lafleur C., Kimmins S. (2019). The genomic distribution of histone H3K4me2 in spermatogonia is highly conserved in sperm. PubMed DOI
Liao C., Kannan K. (2014). A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. PubMed DOI
Liao C., Liu F., Alomirah H., Loi V. D., Mohd M. A., Moon H. B., et al. (2012a). Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. PubMed DOI
Liao C., Liu F., Guo Y., Moon H. B., Nakata H., Wu Q., et al. (2012b). Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. PubMed DOI
Lovrien R., Matulis D. (2005). Assays for total protein. PubMed DOI
Luo D., Pan Y., Zeng L., Du B., Li J., Mei S. (2021). Occurrence of multiple bisphenol S derivates in breast milk from Chinese Lactating women and implications for exposure in breastfed infants. DOI
Matalová P., Urbánek K., Anzenbacher P. (2016). Specific features of pharmacokinetics in children. PubMed DOI
Meng C., Liao J., Zhao D., Huang H., Qin J., Lee T. L., et al. (2019). L3MBTL2 regulates chromatin remodeling during spermatogenesis. PubMed DOI PMC
Middelkamp S., van Tol H. T. A., Spierings D. C. J., Boymans S., Guryev V., Roelen B. A. J., et al. (2020). Sperm DNA damage causes genomic instability in early embryonic development. PubMed DOI PMC
Mok-Lin E., Ehrlich S., Williams P. L., Petrozza J., Wright D. L., Calafat A. M., et al. (2010). Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. PubMed DOI PMC
Muñoz-de-Toro M., Markey C. M., Wadia P. R., Luque E. H., Rubin B. S., Sonnenschein C., et al. (2005). Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. PubMed DOI PMC
Nakata H., Wakayama T., Takai Y., Iseki S. (2015). Quantitative analysis of the cellular composition in seminiferous tubules in normal and genetically modified infertile mice. PubMed DOI PMC
Nevoral J., Havránková J., Kolinko Y., Prokešová Š, Fenclová T., Monsef L., et al. (2021). Exposure to alternative bisphenols BPS and BPF through breast milk: noxious heritage effect during nursing associated with idiopathic infertility. PubMed DOI
Nevoral J., Kolinko Y., Moravec J., Žalmanová T., Hošková K., Prokešová Š, et al. (2018). Long-term exposure to very low doses of bisphenol S affects female reproduction. PubMed DOI
Olsen A. K., Lindeman B., Wiger R., Duale N., Brunborg G. (2005). How do male germ cells handle DNA damage? PubMed DOI
Olson B. J., Markwell J. (2016). Assays for determination of protein concentration. PubMed
Prokešová Š, Ghaibour K., Liška F., Klein P., Fenclová T., Štiavnická M., et al. (2020). al. Acute low-dose bisphenol S exposure affects mouse oocyte quality. PubMed DOI
Rahman M. S., Kwon W. S., Karmakar P. C., Yoon S. J., Ryu B. Y., Pang M. G. (2017). Gestational exposure to bisphenol A affects the function and proteome profile of F1 spermatozoa in adult mice. PubMed DOI PMC
Rahman M. S., Kwon W. S., Lee J. S., Yoon S. J., Ryu B. Y., Pang M. G. (2015). Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. PubMed DOI PMC
Rajabi H., Mohseni-Kouchesfehani H., Eslami-Arshaghi T., Salehi M. (2018). Sperm DNA fragmentation affects epigenetic feature in human male pronucleus. PubMed DOI
Řimnáčová H., Štiavnická M., Moravec J., Chemek M., Kolinko Y., García-Álvarez O., et al. (2020). Low doses of bisphenol S affect post-translational modifications of sperm proteins in male mice. PubMed DOI PMC
Rivera O. E., Varayoud J., Rodríguez H. A., Santamaría C. G., Bosquiazzo V. L., Osti M., et al. (2015). Neonatal exposure to xenoestrogens impairs the ovarian response to gonadotropin treatment in lambs. PubMed DOI
Salian S., Doshi T., Vanage G. (2011). Perinatal exposure of rats to bisphenol A affects fertility of male offspring–An overview. PubMed DOI
Sedó C. A., Bilinski M., Lorenzi D., Uriondo H., Noblía F., Longobucco V., et al. (2017). Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. PubMed DOI PMC
Sharma A., Singh K., Almasan A. (2012). Histone H2AX phosphorylation: a marker for DNA damage. PubMed DOI
Shi M., Sekulovski N., MacLean J. A., Hayashi K. (2017). Effects of bisphenol A analogues on reproductive functions in mice. PubMed DOI
Shi M., Sekulovski N., MacLean J. A., Hayashi K. (2018). Prenatal exposure to bisphenol A analogues on male reproductive functions in mice. PubMed DOI
Shi M., Whorton A. E., Sekulovski N., MacLean J. A., Hayashi K. (2019). Prenatal exposure to bisphenol A, E, and S induces transgenerational effects on male reproductive functions in mice. PubMed DOI
Simoneau C., Valzacchi S., Morkunas V., van den Eede L. (2011). Comparison of migration from polyethersulphone and polycarbonate baby bottles. PubMed DOI
Siracusa J. S., Yin L., Measel E., Liang S., Yu X. (2018). Effects of bisphenol A and its analogs on reproductive health: a mini review. PubMed DOI PMC
Štiavnická M., García-Álvarez O., Ulčová-Gallová Z., Sutovsky P., Abril-Parreño L., Dolejšová M., et al. (2020). H3K4me2 accompanies chromatin immaturity in human spermatozoa: an epigenetic marker for sperm quality assessment. PubMed DOI
Stitzel M. L., Seydoux G. (2007). Regulation of the oocyte-to-zygote transition. PubMed DOI
Sutovsky P., Schatten G. (2000). Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. PubMed DOI
Svoboda P. (2018). Mammalian zygotic genome activation. PubMed
Tesarik J. (2005). Paternal effects on cell division in the human preimplantation embryo. PubMed DOI
Turinetto V., Orlando L., Sanchez-Ripoll Y., Kumpfmueller B., Storm M. P., Porcedda P., et al. (2012). High basal γH2AX levels sustain self-renewal of mouse embryonic and induced pluripotent stem cells. PubMed DOI
Ullah A., Pirzada M., Jahan S., Ullah H., Khan M. J. (2019). Bisphenol A analogues bisphenol B, bisphenol F, and bisphenol S induce oxidative stress, disrupt daily sperm production, and damage DNA in rat spermatozoa: a comparative in vitro and in vivo study. PubMed DOI
Ullah A., Pirzada M., Jahan S., Ullah H., Shaheen G., Rehman H., et al. (2018). Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. PubMed DOI
Vandenberg L. N., Chahoud I., Heindel J. J., Padmanabhan V., Paumgartten F. J. R., Schoenfelder G. (2010). Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. PubMed DOI PMC
Vandenberg L. N., Colborn T., Hayes T. B., Heindel J. J., Jacobs D. R., Lee D. H., et al. (2012). Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. PubMed DOI PMC
Vandenberg L. N., Hauser R., Marcus M., Olea N., Welshons W. V. (2007). Human exposure to bisphenol A (BPA). PubMed
Ventelä S., Ohta H., Parvinen M., Nishimune Y. (2002). Development of the stages of the cycle in mouse seminiferous epithelium after transplantation of green fluorescent protein-labeled spermatogonial stem cells. PubMed DOI
Viñas P., Campillo N., Martínez-Castillo N., Hernández-Córdoba M. (2010). Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. PubMed DOI
Wang S., Meyer D. H., Schumacher B. (2020). H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. PubMed DOI
Wong K. H., Durrani T. S. (2017). Exposures to endocrine disrupting chemicals in consumer products-A guide for pediatricians. PubMed DOI
Wu L. H., Zhang X. M., Wang F., Gao C. J., Chen D., Palumbo J. R., et al. (2018). Occurrence of bisphenol S in the environment and implications for human exposure: a short review. PubMed DOI
Wyck S., Herrera C., Requena C. E., Bittner L., Hajkova P., Bollwein H., et al. (2018). Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development 06 0604 11 medical and health sciences 1114 paediatrics and reproductive medicine 06 biological sciences 0601 Biochemistry and Cell. PubMed DOI PMC
Žalmanová T., Hošková K., Nevoral J., Adámková K., Kott T., Šulc M., et al. (2017). Bisphenol S negatively affects the meotic maturation of pig oocytes. PubMed DOI PMC
Žalmanová T., Hošková K., Nevoral J., Prokešová Š, Zámostná K., Kott T., et al. (2016). Bisphenol S instead of bisphenol A: a story of reproductive disruption by regretable substitution – A review.
Zhang J., Parvin J., Huang K. (2012). Redistribution of H3K4me2 on neural tissue specific genes during mouse brain development. PubMed DOI PMC
CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos