• This record comes from PubMed

Ubiquitin Modification of the Epstein-Barr Virus Immediate Early Transactivator Zta

. 2020 Oct 27 ; 94 (22) : . [epub] 20201027

Language English Country United States Media electronic-print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P20 GM121288 NIGMS NIH HHS - United States
U54 GM104940 NIGMS NIH HHS - United States

The Epstein-Barr virus (EBV) immediate early transactivator Zta plays a key role in regulating the transition from latency to the lytic replication stages of EBV infection. Regulation of Zta is known to be controlled through a number of transcriptional and posttranscriptional events. Here, we show that Zta is targeted for ubiquitin modification and that this can occur in EBV-negative and in EBV-infected cells. Genetic studies show critical roles for both an amino-terminal region of Zta and the basic DNA binding domain of Zta in regulating Zta ubiquitination. Pulse-chase experiments demonstrate that the bulk population of Zta is relatively stable but that at least a subset of ubiquitinated Zta molecules are targeted for degradation in the cell. Mutation of four out of a total of nine lysine residues in Zta largely abrogates its ubiquitination, indicating that these are primary ubiquitination target sites. A Zta mutant carrying mutations at these four lysine residues (lysine 12, lysine 188, lysine 207, and lysine 219) cannot induce latently infected cells to produce and/or release infectious virions. Nevertheless, this mutant can induce early gene expression, suggesting a possible defect at the level of viral replication or later in the lytic cascade. As far as we know, this is the first study that has investigated the targeting of Zta by ubiquitination or its role in Zta function.IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen and associated with various human diseases. EBV undergoes latency and lytic replication stages in its life cycle. The transition into the lytic replication stage, at which virus is produced, is mainly regulated by the viral gene product, Zta. Therefore, the regulation of Zta function becomes a central issue regarding viral biology and pathogenesis. Known modifications of Zta include phosphorylation and sumoylation. Here, we report the role of ubiquitination in regulating Zta function. We found that Zta is subjected to ubiquitination in both EBV-infected and EBV-negative cells. The ubiquitin modification targets 4 lysine residues on Zta, leading to both mono- and polyubiquitination of Zta. Ubiquitination of Zta affects the protein's stability and likely contributes to the progression of viral lytic replication. The function and fate of Zta may be determined by the specific lysine residue being modified.

See more in PubMed

Rickinson AB, Kieff E. 2007. Epstein-Barr virus, p 2655–2700. In Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed), Fields virology, 5th ed Lippincott Williams & Wilkins, Philadelphia, PA.

Young LS, Yap LF, Murray PG. 2016. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802. doi:10.1038/nrc.2016.92. PubMed DOI

de Sanjose S, Bosch R, Schouten T, Verkuijlen S, Nieters A, Foretova L, Maynadie M, Cocco PL, Staines A, Becker N, Brennan P, Benavente Y, Boffetta P, Meijer CJ, Middeldorp JM. 2007. Epstein-Barr virus infection and risk of lymphoma: immunoblot analysis of antibody responses against EBV-related proteins in a large series of lymphoma subjects and matched controls. Int J Cancer 121:1806–1812. doi:10.1002/ijc.22857. PubMed DOI

Kheir F, Zhao M, Strong MJ, Yu Y, Nanbo A, Flemington EK, Morris GF, Reiss K, Li L, Lin Z. 2019. Detection of Epstein-Barr virus infection in non-small cell lung cancer. Cancers (Basel) 11:759. doi:10.3390/cancers11060759. PubMed DOI PMC

Strong MJ, O’Grady T, Lin Z, Xu G, Baddoo M, Parsons C, Zhang K, Taylor CM, Flemington EK. 2013. Epstein-Barr virus and human herpesvirus 6 detection in a non-Hodgkin’s diffuse large B-cell lymphoma cohort by using RNA sequencing. J Virol 87:13059–13062. doi:10.1128/JVI.02380-13. PubMed DOI PMC

Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, Lacey MR, Strong AL, Lehman TA, Seddon MB, Lin Z, Concha M, Baddoo M, Ferris M, Swan KF, Sullivan DE, Burow ME, Taylor CM, Flemington EK. 2013. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 9:e1003341. doi:10.1371/journal.ppat.1003341. PubMed DOI PMC

Farrell PJ, Rowe DT, Rooney CM, Kouzarides T. 1989. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8:127–132. doi:10.1002/j.1460-2075.1989.tb03356.x. PubMed DOI PMC

Lieberman PM, Berk AJ. 1990. In vitro transcriptional activation, dimerization, and DNA-binding specificity of the Epstein-Barr virus Zta protein. J Virol 64:2560–2568. doi:10.1128/JVI.64.6.2560-2568.1990. PubMed DOI PMC

Lieberman PM, Berk AJ. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5:2441–2454. doi:10.1101/gad.5.12b.2441. PubMed DOI

Lieberman PM, Berk AJ. 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA–promoter DNA complex formation. Genes Dev 8:995–1006. doi:10.1101/gad.8.9.995. PubMed DOI

Lieberman PM, Ozer J, Gursel DB. 1997. Requirement for transcription factor IIA (TFIIA)-TFIID recruitment by an activator depends on promoter structure and template competition. Mol Cell Biol 17:6624–6632. doi:10.1128/mcb.17.11.6624. PubMed DOI PMC

Adamson AL, Kenney S. 1999. The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73:6551–6558. doi:10.1128/JVI.73.8.6551-6558.1999. PubMed DOI PMC

Zerby D, Chen CJ, Poon E, Lee D, Shiekhattar R, Lieberman PM. 1999. The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. Mol Cell Biol 19:1617–1626. doi:10.1128/mcb.19.3.1617. PubMed DOI PMC

Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. 2001. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21:476–487. doi:10.1128/MCB.21.2.476-487.2001. PubMed DOI PMC

Deng Z, Chen CJ, Chamberlin M, Lu F, Blobel GA, Speicher D, Cirillo LA, Zaret KS, Lieberman PM. 2003. The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol 23:2633–2644. doi:10.1128/mcb.23.8.2633-2644.2003. PubMed DOI PMC

Fixman ED, Hayward GS, Hayward SD. 1992. trans-Acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66:5030–5039. doi:10.1128/JVI.66.8.5030-5039.1992. PubMed DOI PMC

Fixman ED, Hayward GS, Hayward SD. 1995. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69:2998–3006. doi:10.1128/JVI.69.5.2998-3006.1995. PubMed DOI PMC

Hammerschmidt W, Sugden B. 1988. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55:427–433. doi:10.1016/0092-8674(88)90028-1. PubMed DOI

Sarisky RT, Gao Z, Lieberman PM, Fixman ED, Hayward GS, Hayward SD. 1996. A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 70:8340–8347. doi:10.1128/JVI.70.12.8340-8347.1996. PubMed DOI PMC

Schepers A, Pich D, Hammerschmidt W. 1993. A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. EMBO J 12:3921–3929. doi:10.1002/j.1460-2075.1993.tb06070.x. PubMed DOI PMC

Schepers A, Pich D, Mankertz J, Hammerschmidt W. 1993. cis-Acting elements in the lytic origin of DNA replication of Epstein-Barr virus. J Virol 67:4237–4245. doi:10.1128/JVI.67.7.4237-4245.1993. PubMed DOI PMC

Schepers A, Pich D, Hammerschmidt W. 1996. Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 220:367–376. doi:10.1006/viro.1996.0325. PubMed DOI

Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD. 1998. The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72:8559–8567. doi:10.1128/JVI.72.11.8559-8567.1998. PubMed DOI PMC

Flemington E, Speck SH. 1990. Epstein-Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene, c-fos. J Virol 64:4549–4552. doi:10.1128/JVI.64.9.4549-4552.1990. PubMed DOI PMC

Yoshizaki T, Sato H, Murono S, Pagano JS, Furukawa M. 1999. Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis 17:431–436. doi:10.1023/a:1006699003525. PubMed DOI

Lu J, Chua HH, Chen SY, Chen JY, Tsai CH. 2003. Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63:256–262. PubMed

Lu J, Chen SY, Chua HH, Liu YS, Huang YT, Chang Y, Chen JY, Sheen TS, Tsai CH. 2000. Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol 74:7391–7399. doi:10.1128/jvi.74.16.7391-7399.2000. PubMed DOI PMC

Cayrol C, Flemington EK. 1995. Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol 69:4206–4212. doi:10.1128/JVI.69.7.4206-4212.1995. PubMed DOI PMC

Mahot S, Sergeant A, Drouet E, Gruffat H. 2003. A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84:965–974. doi:10.1099/vir.0.18845-0. PubMed DOI

Chang Y, Lee HH, Chen YT, Lu J, Wu SY, Chen CW, Takada K, Tsai CH. 2006. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 80:7748–7755. doi:10.1128/JVI.02608-05. PubMed DOI PMC

Jones RJ, Seaman WT, Feng WH, Barlow E, Dickerson S, Delecluse HJ, Kenney SC. 2007. Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer 121:1274–1281. doi:10.1002/ijc.22839. PubMed DOI

Cayrol C, Flemington E. 1996. G0/G1 growth arrest mediated by a region encompassing the basic leucine zipper (bZIP) domain of the Epstein-Barr virus transactivator Zta. J Biol Chem 271:31799–31802. doi:10.1074/jbc.271.50.31799. PubMed DOI

Cayrol C, Flemington EK. 1996. The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 15:2748–2759. doi:10.1002/j.1460-2075.1996.tb00635.x. PubMed DOI PMC

Rodriguez A, Armstrong M, Dwyer D, Flemington E. 1999. Genetic dissection of cell growth arrest functions mediated by the Epstein-Barr virus lytic gene product, Zta. J Virol 73:9029–9038. doi:10.1128/JVI.73.11.9029-9038.1999. PubMed DOI PMC

Rodriguez A, Jung EJ, Yin Q, Cayrol C, Flemington EK. 2001. Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 284:159–169. doi:10.1006/viro.2001.0923. PubMed DOI

Rodriguez A, Jung EJ, Flemington EK. 2001. Cell cycle analysis of Epstein-Barr virus-infected cells following treatment with lytic cycle-inducing agents. J Virol 75:4482–4489. doi:10.1128/JVI.75.10.4482-4489.2001. PubMed DOI PMC

Wu FY, Chen H, Wang SE, ApRhys CM, Liao G, Fujimuro M, Farrell CJ, Huang J, Hayward SD, Hayward GS. 2003. CCAAT/enhancer binding protein alpha interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G(1) cell cycle arrest during the Epstein-Barr virus lytic cycle. J Virol 77:1481–1500. doi:10.1128/jvi.77.2.1481-1500.2003. PubMed DOI PMC

Lin Z, Yin Q, Flemington E. 2004. Identification of a negative regulatory element in the Epstein-Barr virus Zta transactivation domain that is regulated by the cell cycle control factors c-Myc and E2F1. J Virol 78:11962–11971. doi:10.1128/JVI.78.21.11962-11971.2004. PubMed DOI PMC

Morrison TE, Mauser A, Wong A, Ting JP, Kenney SC. 2001. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 15:787–799. doi:10.1016/s1074-7613(01)00226-6. PubMed DOI

Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS. 2005. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol 79:10040–10052. doi:10.1128/JVI.79.15.10040-10052.2005. PubMed DOI PMC

Keating S, Prince S, Jones M, Rowe M. 2002. The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol 76:8179–8188. doi:10.1128/jvi.76.16.8179-8188.2002. PubMed DOI PMC

Morrison TE, Mauser A, Klingelhutz A, Kenney SC. 2004. Epstein-Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J Virol 78:544–549. doi:10.1128/jvi.78.1.544-549.2004. PubMed DOI PMC

Guenther JF, Cameron JE, Nguyen HT, Wang Y, Sullivan DE, Shan B, Lasky JA, Flemington EK, Morris GF. 2010. Modulation of lung inflammation by the Epstein-Barr virus protein Zta. Am J Physiol Lung Cell Mol Physiol 299:L771–L784. doi:10.1152/ajplung.00408.2009. PubMed DOI PMC

Inman GJ, Binne UK, Parker GA, Farrell PJ, Allday MJ. 2001. Activators of the Epstein-Barr virus lytic program concomitantly induce apoptosis, but lytic gene expression protects from cell death. J Virol 75:2400–2410. doi:10.1128/JVI.75.5.2400-2410.2001. PubMed DOI PMC

Mauser A, Saito S, Appella E, Anderson CW, Seaman WT, Kenney S. 2002. The Epstein-Barr virus immediate-early protein BZLF1 regulates p53 function through multiple mechanisms. J Virol 76:12503–12512. doi:10.1128/jvi.76.24.12503-12512.2002. PubMed DOI PMC

Zhang Q, Gutsch D, Kenney S. 1994. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol 14:1929–1938. doi:10.1128/mcb.14.3.1929. PubMed DOI PMC

Adamson AL, Kenney S. 2001. Epstein-Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75:2388–2399. doi:10.1128/JVI.75.5.2388-2399.2001. PubMed DOI PMC

LaJeunesse DR, Brooks K, Adamson AL. 2005. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochem Biophys Res Commun 333:438–442. doi:10.1016/j.bbrc.2005.05.120. PubMed DOI

Adamson AL. 2005. Epstein-Barr virus BZLF1 protein binds to mitotic chromosomes. J Virol 79:7899–7904. doi:10.1128/JVI.79.12.7899-7904.2005. PubMed DOI PMC

El-Guindy AS, Miller G. 2004. Phosphorylation of Epstein-Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta. J Virol 78:7634–7644. doi:10.1128/JVI.78.14.7634-7644.2004. PubMed DOI PMC

Baumann M, Mischak H, Dammeier S, Kolch W, Gires O, Pich D, Zeidler R, Delecluse HJ, Hammerschmidt W. 1998. Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol 72:8105–8114. doi:10.1128/JVI.72.10.8105-8114.1998. PubMed DOI PMC

Asai R, Kato A, Kato K, Kanamori-Koyama M, Sugimoto K, Sairenji T, Nishiyama Y, Kawaguchi Y. 2006. Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80:5125–5134. doi:10.1128/JVI.02674-05. PubMed DOI PMC

El-Guindy A, Heston L, Delecluse HJ, Miller G. 2007. Phosphoacceptor site S173 in the regulatory domain of Epstein-Barr virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes. J Virol 81:3303–3316. doi:10.1128/JVI.02445-06. PubMed DOI PMC

El-Guindy AS, Paek SY, Countryman J, Miller G. 2006. Identification of constitutive phosphorylation sites on the Epstein-Barr virus ZEBRA protein. J Biol Chem 281:3085–3095. doi:10.1074/jbc.M506076200. PubMed DOI

Daibata M, Humphreys RE, Sairenji T. 1992. Phosphorylation of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA. Virology 188:916–920. doi:10.1016/0042-6822(92)90553-2. PubMed DOI

Kolman JL, Taylor N, Marshak DR, Miller G. 1993. Serine-173 of the Epstein-Barr virus ZEBRA protein is required for DNA binding and is a target for casein kinase II phosphorylation. Proc Natl Acad Sci U S A 90:10115–10119. doi:10.1073/pnas.90.21.10115. PubMed DOI PMC

Adamson AL. 2005. Effects of SUMO-1 upon Epstein-Barr virus BZLF1 function and BMRF1 expression. Biochem Biophys Res Commun 336:22–28. doi:10.1016/j.bbrc.2005.08.036. PubMed DOI

Hershko A, Ciechanover A, Varshavsky A. 2000. The ubiquitin system. Nat Med 6:1073–1081. doi:10.1038/80384. PubMed DOI

Pickart CM. 2001. Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533. doi:10.1146/annurev.biochem.70.1.503. PubMed DOI

Weissman AM. 2001. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178. doi:10.1038/35056563. PubMed DOI

Hochstrasser M. 2000. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2:E153–E157. doi:10.1038/35019643. PubMed DOI

Finley D, Sadis S, Monia BP, Boucher P, Ecker DJ, Crooke ST, Chau V. 1994. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 14:5501–5509. doi:10.1128/mcb.14.8.5501. PubMed DOI PMC

Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583. doi:10.1126/science.2538923. PubMed DOI

Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102. doi:10.1093/emboj/19.1.94. PubMed DOI PMC

Bres V, Kiernan RE, Linares LK, Chable-Bessia C, Plechakova O, Treand C, Emiliani S, Peloponese JM, Jeang KT, Coux O, Scheffner M, Benkirane M. 2003. A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 5:754–761. doi:10.1038/ncb1023. PubMed DOI

Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M. 2005. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123:409–421. doi:10.1016/j.cell.2005.08.016. PubMed DOI

Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361. doi:10.1016/S0092-8674(00)00126-4. PubMed DOI

Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141. doi:10.1038/nature00991. PubMed DOI

Pickart CM. 2002. DNA repair: right on target with ubiquitin. Nature 419:120–121. doi:10.1038/419120a. PubMed DOI

Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351. doi:10.1038/35085597. PubMed DOI

Haglund K, Dikic I. 2005. Ubiquitylation and cell signaling. EMBO J 24:3353–3359. doi:10.1038/sj.emboj.7600808. PubMed DOI PMC

Hofmann RM, Pickart CM. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–653. doi:10.1016/s0092-8674(00)80575-9. PubMed DOI

Spence J, Sadis S, Haas AL, Finley D. 1995. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273. doi:10.1128/mcb.15.3.1265. PubMed DOI PMC

Spence J, Gali RR, Dittmar G, Sherman F, Karin M, Finley D. 2000. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102:67–76. doi:10.1016/s0092-8674(00)00011-8. PubMed DOI

Galan JM, Haguenauer-Tsapis R. 1997. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16:5847–5854. doi:10.1093/emboj/16.19.5847. PubMed DOI PMC

Welcker M, Orian A, Jin J, Grim JE, Grim JA, Harper JW, Eisenman RN, Clurman BE. 2004. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A 101:9085–9090. doi:10.1073/pnas.0402770101. PubMed DOI PMC

Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI. 2004. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23:2116–2125. doi:10.1038/sj.emboj.7600217. PubMed DOI PMC

von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Soderberg O, Kerppola TK, Larsson LG. 2003. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11:1189–1200. doi:10.1016/s1097-2765(03)00193-x. PubMed DOI

Glickman MH, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. doi:10.1152/physrev.00027.2001. PubMed DOI

Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425. PubMed DOI

Guerreiro P, Rodrigues-Pousada C. 1996. Characterization of a polyubiquitin gene in T. thermophila and of ubiquitin gene expression during sexual reproduction and under stress conditions. Gene 182:183–188. doi:10.1016/S0378-1119(96)00551-3. PubMed DOI

Weber G. 2007. Molecular mechanisms of cancer, p 309–335. Springer, Dordrecht, the Netherlands.

Petosa C, Morand P, Baudin F, Moulin M, Artero JB, Muller CW. 2006. Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 21:565–572. doi:10.1016/j.molcel.2006.01.006. PubMed DOI

Schelcher C, Al Mehairi S, Verrall E, Hope Q, Flower K, Bromley B, Woolfson DN, West MJ, Sinclair AJ. 2007. Atypical bZIP domain of viral transcription factor contributes to stability of dimer formation and transcriptional function. J Virol 81:7149–7155. doi:10.1128/JVI.00215-07. PubMed DOI PMC

Hicks MR, Al-Mehairi SS, Sinclair AJ. 2003. The zipper region of Epstein-Barr virus bZIP transcription factor Zta is necessary but not sufficient to direct DNA binding. J Virol 77:8173–8177. doi:10.1128/jvi.77.14.8173-8177.2003. PubMed DOI PMC

Mikaelian I, Drouet E, Marechal V, Denoyel G, Nicolas JC, Sergeant A. 1993. The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence. J Virol 67:734–742. doi:10.1128/JVI.67.2.734-742.1993. PubMed DOI PMC

Giot JF, Mikaelian I, Buisson M, Manet E, Joab I, Nicolas JC, Sergeant A. 1991. Transcriptional interference between the EBV transcription factors EB1 and R: both DNA-binding and activation domains of EB1 are required. Nucleic Acids Res 19:1251–1258. doi:10.1093/nar/19.6.1251. PubMed DOI PMC

Song Z, Wu M. 2005. Identification of a novel nucleolar localization signal and a degradation signal in Survivin-deltaEx3: a potential link between nucleolus and protein degradation. Oncogene 24:2723–2734. doi:10.1038/sj.onc.1208097. PubMed DOI

Flemington EK, Lytle JP, Cayrol C, Borras AM, Speck SH. 1994. DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol 14:3041–3052. doi:10.1128/mcb.14.5.3041. PubMed DOI PMC

Xu P, Peng J. 2006. Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947. doi:10.1016/j.bbapap.2006.09.004. PubMed DOI PMC

Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. 2003. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926. doi:10.1038/nbt849. PubMed DOI

Yang YC, Yoshikai Y, Hsu SW, Saitoh H, Chang LK. 2013. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 288:12866–12879. doi:10.1074/jbc.M112.413393. PubMed DOI PMC

Tikhmyanova N, Tutton S, Martin KA, Lu F, Kossenkov AV, Paparoidamis N, Kenney S, Salvino JM, Lieberman PM. 2017. Small molecule perturbation of the CAND1-Cullin1-ubiquitin cycle stabilizes p53 and triggers Epstein-Barr virus reactivation. PLoS Pathog 13:e1006517. doi:10.1371/journal.ppat.1006517. PubMed DOI PMC

Sompallae R, Gastaldello S, Hildebrand S, Zinin N, Hassink G, Lindsten K, Haas J, Persson B, Masucci MG. 2008. Epstein-Barr virus encodes three bona fide ubiquitin-specific proteases. J Virol 82:10477–10486. doi:10.1128/JVI.01113-08. PubMed DOI PMC

Rao N, Dodge I, Band H. 2002. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 71:753–763. PubMed

Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. 2002. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 22:3316–3326. doi:10.1128/mcb.22.10.3316-3326.2002. PubMed DOI PMC

Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. 2005. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8:25–33. doi:10.1016/j.ccr.2005.06.005. PubMed DOI

Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. 1999. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96:13777–13782. doi:10.1073/pnas.96.24.13777. PubMed DOI PMC

Shieh SY, Ikeda M, Taya Y, Prives C. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334. doi:10.1016/s0092-8674(00)80416-x. PubMed DOI

Fuchs SY, Adler V, Pincus MR, Ronai Z. 1998. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A 95:10541–10546. doi:10.1073/pnas.95.18.10541. PubMed DOI PMC

Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM. 2003. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300:342–344. doi:10.1126/science.1080386. PubMed DOI

Harris SL, Levine AJ. 2005. The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908. doi:10.1038/sj.onc.1208615. PubMed DOI

Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791. doi:10.1016/s0092-8674(03)00193-4. PubMed DOI

Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J, Liu LF, Lutzker S, Saleem A, Rubin EH. 2004. Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 279:36440–36444. doi:10.1074/jbc.C400300200. PubMed DOI

Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. 2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951. doi:10.1074/jbc.275.12.8945. PubMed DOI

Alarcon-Vargas D, Ronai Z. 2002. p53-Mdm2—the affair that never ends. Carcinogenesis 23:541–547. doi:10.1093/carcin/23.4.541. PubMed DOI

Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O’Rourke K, Koeppen H, Dixit VM. 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92. doi:10.1038/nature02514. PubMed DOI

Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W. 2002. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–653. doi:10.1038/nature737. PubMed DOI

Wilkinson KD. 2000. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148. doi:10.1006/scdb.2000.0164. PubMed DOI

Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ, Eilers M. 2007. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9:765–774. doi:10.1038/ncb1601. PubMed DOI

Li Z, Wang D, Messing EM, Wu G. 2005. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep 6:373–378. doi:10.1038/sj.embor.7400377. PubMed DOI PMC

Lim SK, Shin JM, Kim YS, Baek KH. 2004. Identification and characterization of murine mHAUSP encoding a deubiquitinating enzyme that regulates the status of p53 ubiquitination. Int J Oncol 24:357–364. PubMed

Li M, Brooks CL, Kon N, Gu W. 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13:879–886. doi:10.1016/s1097-2765(04)00157-1. PubMed DOI

Morrison TE, Kenney SC. 2004. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function. Virology 328:219–232. doi:10.1016/j.virol.2004.07.020. PubMed DOI

Gutsch DE, Holley-Guthrie EA, Zhang Q, Stein B, Blanar MA, Baldwin AS, Kenney SC. 1994. The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-kappa B. Mol Cell Biol 14:1939–1948. doi:10.1128/mcb.14.3.1939. PubMed DOI PMC

Sato Y, Shirata N, Kudoh A, Iwahori S, Nakayama S, Murata T, Isomura H, Nishiyama Y, Tsurumi T. 2009. Expression of Epstein-Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription. Virology 388:204–211. doi:10.1016/j.virol.2009.03.017. PubMed DOI

Morrow JK, Lin HK, Sun SC, Zhang S. 2015. Targeting ubiquitination for cancer therapies. Future Med Chem 7:2333–2350. doi:10.4155/fmc.15.148. PubMed DOI PMC

Yang Y, Staudt LM. 2015. Protein ubiquitination in lymphoid malignancies. Immunol Rev 263:240–256. doi:10.1111/imr.12247. PubMed DOI PMC

Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, Xu G, Baribault C, Fewell C, Hulme W, Hedges D, Taylor CM, Flemington EK. 2013. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87:1172–1182. doi:10.1128/JVI.02517-12. PubMed DOI PMC

Takimoto T, Kamide M, Umeda R. 1984. Establishment of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA)-positive nasopharyngeal carcinoma hybrid cell line (NPC-KT). Arch Otorhinolaryngol 239:87–92. doi:10.1007/BF00454266. PubMed DOI

Takimoto T, Furukawa M, Hatano M, Umeda R. 1984. Epstein-Barr virus nuclear antigen-positive nasopharyngeal hybrid cells. Ann Otol Rhinol Laryngol 93:166–169. doi:10.1177/000348948409300213. PubMed DOI

Delecluse HJ, Hilsendegen T, Pich D, Zeidler R, Hammerschmidt W. 1998. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95:8245–8250. doi:10.1073/pnas.95.14.8245. PubMed DOI PMC

Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W, Delecluse HJ. 2000. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089. doi:10.1093/emboj/19.12.3080. PubMed DOI PMC

Cao S, Moss W, O’Grady T, Concha M, Strong MJ, Wang X, Yu Y, Baddoo M, Zhang K, Fewell C, Lin Z, Dong Y, Flemington EK. 2015. New noncoding lytic transcripts derived from the Epstein-Barr virus latency origin of replication, oriP, are hyperedited, bind the paraspeckle protein, NONO/p54nrb, and support viral lytic transcription. J Virol 89:7120–7132. doi:10.1128/JVI.00608-15. PubMed DOI PMC

Campanero MR, Flemington EK. 1997. Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci U S A 94:2221–2226. doi:10.1073/pnas.94.6.2221. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...