Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer

. 2019 May 31 ; 11 (6) : . [epub] 20190531

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31159203

Grantová podpora
P20 GM121288 NIH HHS - United States
U54 GM104940 NIGMS NIH HHS - United States
R21 CA236549 NCI NIH HHS - United States
R01 CA243793 NCI NIH HHS - United States
P20 GM121288 NIGMS NIH HHS - United States
R01 AI106676 NIAID NIH HHS - United States
faculty research pilot grant Tulane school of medicine

Previous investigations proposed a link between the Epstein-Barr virus (EBV) and lung cancer (LC), but the results are highly controversial largely due to the insufficient sample size and the inherent limitation of the traditional viral screening methods such as PCR. Unlike PCR, current next-generation sequencing (NGS) utilizes an unbiased method for the global assessment of all exogenous agents within a cancer sample with high sensitivity and specificity. In our current study, we aim to resolve this long-standing controversy by utilizing our unbiased NGS-based informatics approaches in conjunction with traditional molecular methods to investigate the role of EBV in a total of 1127 LC. In situ hybridization analysis of 110 LC and 10 normal lung samples detected EBV transcripts in 3 LC samples. Comprehensive virome analyses of RNA sequencing (RNA-seq) data sets from 1017 LC and 110 paired adjacent normal lung specimens revealed EBV transcripts in three lung squamous cell carcinoma and one lung adenocarcinoma samples. In the sample with the highest EBV coverage, transcripts from the BamHI A region accounted for the majority of EBV reads. Expression of EBNA-1, LMP-1 and LMP-2 was observed. A number of viral circular RNA candidates were also detected. Thus, we for the first time revealed a type II latency-like viral transcriptome in the setting of LC in vivo. The high-level expression of viral BamHI A transcripts in LC suggests a functional role of these transcripts, likely as long non-coding RNA. Analyses of cellular gene expression and stained tissue sections indicated an increased immune cell infiltration in the sample expressing high levels of EBV transcripts compared to samples expressing low EBV transcripts. Increased level of immune checkpoint blockade factors was also detected in the sample with higher levels of EBV transcripts, indicating an induced immune tolerance. Lastly, inhibition of immune pathways and activation of oncogenic pathways were detected in the sample with high EBV transcripts compared to the EBV-low LC indicating the direct regulation of cancer pathways by EBV. Taken together, our data support the notion that EBV likely plays a pathological role in a subset of LC.

Zobrazit více v PubMed

Engels E.A. Inflammation in the development of lung cancer: Epidemiological evidence. Expert Rev. Anticancer Ther. 2008;8:605–615. doi: 10.1586/14737140.8.4.605. PubMed DOI

Leroux C., Girard N., Cottin V., Greenland T., Mornex J.F., Archer F. Jaagsiekte sheep retrovirus (JSRV): From virus to lung cancer in sheep. Vet. Res. 2007;38:211–228. doi: 10.1051/vetres:2006060. PubMed DOI

Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI

Desgranges C., de-The G. Epstein-Barr virus specific iga serum antibodies in nasopharyngeal and other respiratory carcinomas. Int. J. Cancer. 1979;24:555–559. doi: 10.1002/ijc.2910240506. PubMed DOI

Roy A., Dey S., Chatterjee R. Prevalence of serum IgG and IgM antibodies against Epstein-Barr virus capsid antigen in indian patients with respiratory tract carcinomas. Neoplasma. 1994;41:29–33. PubMed

Lung M.L., Lam W.K., So S.Y., Lam W.P., Chan K.H., Ng M.H. Evidence that respiratory tract is major reservoir for Epstein-Barr virus. Lancet. 1985;1:889–892. doi: 10.1016/S0140-6736(85)91671-X. PubMed DOI

Begin L.R., Eskandari J., Joncas J., Panasci L. Epstein-Barr virus related lymphoepithelioma-like carcinoma of lung. J. Surg. Oncol. 1987;36:280–283. doi: 10.1002/jso.2930360413. PubMed DOI

Castro C.Y., Ostrowski M.L., Barrios R., Green L.K., Popper H.H., Powell S., Cagle P.T., Ro J.Y. Relationship between Epstein-Barr virus and lymphoepithelioma-like carcinoma of the lung: A clinicopathologic study of 6 cases and review of the literature. Hum. Pathol. 2001;32:863–872. doi: 10.1053/hupa.2001.26457. PubMed DOI

Wockel W., Hofler G., Popper H.H., Morresi A. Lymphoepithelioma-like carcinoma of the lung. Pathol. Res. Pract. 1995;191:1170–1174. doi: 10.1016/S0344-0338(11)80665-5. PubMed DOI

Higashiyama M., Doi O., Kodama K., Yokouchi H., Tateishi R., Horiuchi K., Mishima K. Lymphoepithelioma-like carcinoma of the lung: Analysis of two cases for Epstein-Barr virus infection. Hum. Pathol. 1995;26:1278–1282. doi: 10.1016/0046-8177(95)90206-6. PubMed DOI

Ferrara G., Nappi O. Lymphoepithelioma-like carcinoma of the lung. Two cases diagnosed in caucasian patients. Tumori. 1995;81:144–147. doi: 10.1177/030089169508100215. PubMed DOI

Chan J.K., Hui P.K., Tsang W.Y., Law C.K., Ma C.C., Yip T.T., Poon Y.F. Primary lymphoepithelioma-like carcinoma of the lung. A clinicopathologic study of 11 cases. Cancer. 1995;76:413–422. doi: 10.1002/1097-0142(19950801)76:3<413::AID-CNCR2820760311>3.0.CO;2-X. PubMed DOI

Han A.J., Xiong M., Zong Y.S. Association of epstein-barr virus with lymphoepithelioma-like carcinoma of the lung in southern china. Am. J. Clin. Pathol. 2000;114:220–226. doi: 10.1309/148K-ND54-6NJX-NA61. PubMed DOI

Gomez-Roman J.J., Martinez M.N., Fernandez S.L., Val-Bernal J.F. Epstein-Barr virus-associated adenocarcinomas and squamous-cell lung carcinomas. Mod. Pathol. 2009;22:530–537. doi: 10.1038/modpathol.2009.7. PubMed DOI

Chen F.F., Yan J.J., Lai W.W., Jin Y.T., Su I.J. Epstein-Barr virus-associated nonsmall cell lung carcinoma: Undifferentiated “lymphoepithelioma-like” carcinoma as a distinct entity with better prognosis. Cancer. 1998;82:2334–2342. doi: 10.1002/(SICI)1097-0142(19980615)82:12<2334::AID-CNCR6>3.0.CO;2-S. PubMed DOI

Li C.M., Han G.L., Zhang S.J. [Detection of Epstein-Barr virus in lung carcinoma tissue by in situ hybridization] Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2007;21:288–290. PubMed

Kasai K., Sato Y., Kameya T., Inoue H., Yoshimura H., Kon S., Kikuchi K. Incidence of latent infection of Epstein-Barr virus in lung cancers—An analysis of EBER1 expression in lung cancers by in situ hybridization. J. Pathol. 1994;174:257–265. doi: 10.1002/path.1711740405. PubMed DOI

Huber M., Pavlova B., Muhlberger H., Hollaus P., Lintner F. Detection of the Epstein-Barr virus in primary adenocarcinoma of the lung with signet-ring cells. Virchows Arch. 2002;441:25–30. doi: 10.1007/s00428-001-0591-8. PubMed DOI

Wang S., Xiong H., Yan S., Wu N., Lu Z. Identification and characterization of Epstein-Barr virus genomes in lung carcinoma biopsy samples by next-generation sequencing technology. Sci. Rep. 2016;6:26156. doi: 10.1038/srep26156. PubMed DOI PMC

Jafarian A.H., Omidi-Ashrafi A., Mohamadian-Roshan N., Karimi-Shahri M., Ghazvini K., Boroumand-Noughabi S. Association of Epstein Barr virus deoxyribonucleic acid with lung carcinoma. Indian J. Pathol. Microbiol. 2013;56:359–364. PubMed

Chu P.G., Cerilli L., Chen Y.Y., Mills S.E., Weiss L.M. Epstein-Barr virus plays no role in the tumorigenesis of small-cell carcinoma of the lung. Mod. Pathol. 2004;17:158–164. doi: 10.1038/modpathol.3800024. PubMed DOI

Lim W.T., Chuah K.L., Leong S.S., Tan E.H., Toh C.K. Assessment of human papillomavirus and Epstein-Barr virus in lung adenocarcinoma. Oncol. Rep. 2009;21:971–975. doi: 10.3892/or_00000310. PubMed DOI

Koshiol J., Gulley M.L., Zhao Y., Rubagotti M., Marincola F.M., Rotunno M., Tang W., Bergen A.W., Bertazzi P.A., Roy D., et al. Epstein-Barr virus micrornas and lung cancer. Br. J. Cancer. 2011;105:320–326. doi: 10.1038/bjc.2011.221. PubMed DOI PMC

Lin Z., Xu G., Deng N., Taylor C., Zhu D., Flemington E.K. Quantitative and qualitative RNA-Seq-based evaluation of Epstein-Barr virus transcription in type I latency Burkitt’s lymphoma cells. J. Virol. 2010;84:13053–13058. doi: 10.1128/JVI.01521-10. PubMed DOI PMC

Lin Z., Puetter A., Coco J., Xu G., Strong M.J., Wang X., Fewell C., Baddoo M., Taylor C., Flemington E.K. Detection of murine leukemia virus in the Epstein-Barr virus-positive human B-cell line JY, using a computational RNA-Seq-based exogenous agent detection pipeline, PARSES. J. Virol. 2012;86:2970–2977. doi: 10.1128/JVI.06717-11. PubMed DOI PMC

Lin Z., Wang X., Strong M.J., Concha M., Baddoo M., Xu G., Baribault C., Fewell C., Hulme W., Hedges D., et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J. Virol. 2013;87:1172–1182. doi: 10.1128/JVI.02517-12. PubMed DOI PMC

Strong M.J., O’Grady T., Lin Z., Xu G., Baddoo M., Parsons C., Zhang K., Taylor C.M., Flemington E.K. Epstein-Barr virus and human herpesvirus 6 detection in a non-Hodgkin’s diffuse large B-cell lymphoma cohort by using RNA sequencing. J. Virol. 2013;87:13059–13062. doi: 10.1128/JVI.02380-13. PubMed DOI PMC

Strong M.J., Xu G., Coco J., Baribault C., Vinay D.S., Lacey M.R., Strong A.L., Lehman T.A., Seddon M.B., Lin Z., et al. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: Implications for possible immune adjuvant therapy. PLoS Pathog. 2013;9:e1003341. doi: 10.1371/journal.ppat.1003341. PubMed DOI PMC

Strong M.J., Baddoo M., Nanbo A., Xu M., Puetter A., Lin Z. Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes. J. Virol. 2014;88:10696–10704. doi: 10.1128/JVI.01457-14. PubMed DOI PMC

Strong M.J., Laskow T., Nakhoul H., Blanchard E., Liu Y., Wang X., Baddoo M., Lin Z., Yin Q., Flemington E.K. Latent expression of the Epstein-Barr virus (EBV)-encoded major histocompatibility complex class I TAP inhibitor, BNLF2a, in EBV-positive gastric carcinomas. J. Virol. 2015;89:10110–10114. doi: 10.1128/JVI.01110-15. PubMed DOI PMC

Strong M.J., Blanchard E.T., Lin Z., Morris C.A., Baddoo M., Taylor C.M., Ware M.L., Flemington E.K. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus—Tumor association. Acta Neuropathol. Commun. 2016;4:71. doi: 10.1186/s40478-016-0338-z. PubMed DOI PMC

Feng H., Shuda M., Chang Y., Moore P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–1100. doi: 10.1126/science.1152586. PubMed DOI PMC

Castellarin M., Warren R.L., Freeman J.D., Dreolini L., Krzywinski M., Strauss J., Barnes R., Watson P., Allen-Vercoe E., Moore R.A., et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. doi: 10.1101/gr.126516.111. PubMed DOI PMC

Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., et al. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298. doi: 10.1101/gr.126573.111. PubMed DOI PMC

Xu G., Strong M.J., Lacey M.R., Baribault C., Flemington E.K., Taylor C.M. RNA CoMPASS: A dual approach for pathogen and host transcriptome analysis of RNA-Seq datasets. PLoS ONE. 2014;9:e89445. doi: 10.1371/journal.pone.0089445. PubMed DOI PMC

Lerner M.R., Andrews N.C., Miller G., Steitz J.A. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA. 1981;78:805–809. doi: 10.1073/pnas.78.2.805. PubMed DOI PMC

Arrand J.R., Rymo L. Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J. Virol. 1982;41:376–389. PubMed PMC

Schwemmle M., Clemens M.J., Hilse K., Pfeifer K., Troster H., Muller W.E., Bachmann M. Localization of Epstein-Barr virus-encoded RNAs EBER-1 and EBER-2 in interphase and mitotic Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA. 1992;89:10292–10296. doi: 10.1073/pnas.89.21.10292. PubMed DOI PMC

Ungerleider N., Concha M., Lin Z., Roberts C., Wang X., Cao S., Baddoo M., Moss W.N., Yu Y., Seddon M., et al. The Epstein Barr virus circrnaome. PLoS Pathog. 2018;14:e1007206. doi: 10.1371/journal.ppat.1007206. PubMed DOI PMC

Leng N., Dawson J.A., Thomson J.A., Ruotti V., Rissman A.I., Smits B.M., Haag J.D., Gould M.N., Stewart R.M., Kendziorski C. EBSeq: An empirical Bayes hierarchical model for inference in RNA-Seq experiments. Bioinformatics. 2013;29:1035–1043. doi: 10.1093/bioinformatics/btt087. PubMed DOI PMC

Dutta D., Dutta S., Veettil M.V., Roy A., Ansari M.A., Iqbal J., Chikoti L., Kumar B., Johnson K.E., Chandran B. Brca1 regulates ifi16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses. PLoS Pathog. 2015;11:e1005030. doi: 10.1371/journal.ppat.1005030. PubMed DOI PMC

Liao G., Huang J., Fixman E.D., Hayward S.D. The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J. Virol. 2005;79:245–256. doi: 10.1128/JVI.79.1.245-256.2005. PubMed DOI PMC

Maier S., Staffler G., Hartmann A., Hock J., Henning K., Grabusic K., Mailhammer R., Hoffmann R., Wilmanns M., Lang R., et al. Cellular target genes of Epstein-Barr virus nuclear antigen 2. J. Virol. 2006;80:9761–9771. doi: 10.1128/JVI.00665-06. PubMed DOI PMC

Yin Q., McBride J., Fewell C., Lacey M., Wang X., Lin Z., Cameron J., Flemington E.K. Microrna-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J. Virol. 2008;82:5295–5306. doi: 10.1128/JVI.02380-07. PubMed DOI PMC

Cameron J.E., Fewell C., Yin Q., McBride J., Wang X., Lin Z., Flemington E.K. Epstein-Barr virus growth/latency III program alters cellular microrna expression. Virology. 2008;382:257–266. doi: 10.1016/j.virol.2008.09.018. PubMed DOI PMC

Flavell J.R., Baumforth K.R., Wood V.H., Davies G.L., Wei W., Reynolds G.M., Morgan S., Boyce A., Kelly G.L., Young L.S., et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood. 2008;111:292–301. doi: 10.1182/blood-2006-11-059881. PubMed DOI

Newman A.M., Liu C.L., Green M.R., Gentles A.J., Feng W., Xu Y., Hoang C.D., Diehn M., Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 2015;12:453–457. doi: 10.1038/nmeth.3337. PubMed DOI PMC

Tang D., Yue L., Yao R., Zhou L., Yang Y., Lu L., Gao W. P53 prevent tumor invasion and metastasis by down-regulating ido in lung cancer. Oncotarget. 2017;8:54548–54557. doi: 10.18632/oncotarget.17408. PubMed DOI PMC

Yao H., Wang H., Li C., Fang J.Y., Xu J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front. Immunol. 2018;9:1774. doi: 10.3389/fimmu.2018.01774. PubMed DOI PMC

Zhang H., Dutta P., Liu J., Sabri N., Song Y., Li W.X., Li J. Tumour cell-intrinsic CTLA4 regulates PD-l1 expression in non-small cell lung cancer. J. Cell. Mol. Med. 2019;23:535–542. doi: 10.1111/jcmm.13956. PubMed DOI PMC

Villarroel-Espindola F., Yu X., Datar I., Mani N., Sanmamed M., Velcheti V., Syrigos K., Toki M., Zhao H., Chen L., et al. Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin. Cancer Res. 2018;24:1562–1573. doi: 10.1158/1078-0432.CCR-17-2542. PubMed DOI PMC

Thun M.J., Henley S.J., Calle E.E. Tobacco use and cancer: An epidemiologic perspective for geneticists. Oncogene. 2002;21:7307–7325. doi: 10.1038/sj.onc.1205807. PubMed DOI

Sun S., Schiller J.H., Gazdar A.F. Lung cancer in never smokers—A different disease. Nat. Rev. Cancer. 2007;7:778–790. doi: 10.1038/nrc2190. PubMed DOI

Ambinder R.F. Gammaherpesviruses and “Hit-and-Run” oncogenesis. Am. J. Pathol. 2000;156:1–3. doi: 10.1016/S0002-9440(10)64697-4. PubMed DOI PMC

Hu H., Luo M.L., Desmedt C., Nabavi S., Yadegarynia S., Hong A., Konstantinopoulos P.A., Gabrielson E., Hines-Boykin R., Pihan G., et al. Epstein-Barr virus infection of mammary epithelial cells promotes malignant transformation. EBioMedicine. 2016;9:148–160. doi: 10.1016/j.ebiom.2016.05.025. PubMed DOI PMC

Ho J.C., Wong M.P., Lam W.K. Lymphoepithelioma-like carcinoma of the lung. Respirology. 2006;11:539–545. doi: 10.1111/j.1440-1843.2006.00910.x. PubMed DOI

Thun M.J., Hannan L.M., Adams-Campbell L.L., Boffetta P., Buring J.E., Feskanich D., Flanders W.D., Jee S.H., Katanoda K., Kolonel L.N., et al. Lung cancer occurrence in never-smokers: An analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008;5:e185. doi: 10.1371/journal.pmed.0050185. PubMed DOI PMC

Al-Mozaini M., Bodelon G., Karstegl C.E., Jin B., Al-Ahdal M., Farrell P.J. Epstein-Barr virus BART gene expression. J. Gen. Virol. 2009;90:307–316. doi: 10.1099/vir.0.006551-0. PubMed DOI

Smith P.R., de Jesus O., Turner D., Hollyoake M., Karstegl C.E., Griffin B.E., Karran L., Wang Y., Hayward S.D., Farrell P.J. Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J. Virol. 2000;74:3082–3092. doi: 10.1128/JVI.74.7.3082-3092.2000. PubMed DOI PMC

Marquitz A.R., Mathur A., Edwards R.H., Raab-Traub N. Host gene expression is regulated by two types of noncoding rnas transcribed from the Epstein-Barr virus bamhi a rightward transcript region. J. Virol. 2015;89:11256–11268. doi: 10.1128/JVI.01492-15. PubMed DOI PMC

Lin Z., Flemington E.K. Mirnas in the pathogenesis of oncogenic human viruses. Cancer Lett. 2011;305:186–199. doi: 10.1016/j.canlet.2010.08.018. PubMed DOI PMC

Concha M., Wang X., Cao S., Baddoo M., Fewell C., Lin Z., Hulme W., Hedges D., McBride J., Flemington E.K. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J. Virol. 2012;86:1458–1467. doi: 10.1128/JVI.06537-11. PubMed DOI PMC

Fox C.P., Haigh T.A., Taylor G.S., Long H.M., Lee S.P., Shannon-Lowe C., O’Connor S., Bollard C.M., Iqbal J., Chan W.C., et al. A novel latent membrane 2 transcript expressed in Epstein-Barr virus-positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood. 2010;116:3695–3704. doi: 10.1182/blood-2010-06-292268. PubMed DOI PMC

Cen O., Longnecker R. Latent membrane protein 2 (LMP2) Curr. Top. Microbiol. Immunol. 2015;391:151–180. PubMed

Bell M.J., Abbott R.J., Croft N.P., Hislop A.D., Burrows S.R. An HLA-A2-restricted T-cell epitope mapped to the BNLF2a immune evasion protein of Epstein-Barr virus that inhibits TAP. J. Virol. 2009;83:2783–2788. doi: 10.1128/JVI.01724-08. PubMed DOI PMC

Horst D., van Leeuwen D., Croft N.P., Garstka M.A., Hislop A.D., Kremmer E., Rickinson A.B., Wiertz E.J., Ressing M.E. Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J. Immunol. 2009;182:2313–2324. doi: 10.4049/jimmunol.0803218. PubMed DOI

Croft N.P., Shannon-Lowe C., Bell A.I., Horst D., Kremmer E., Ressing M.E., Wiertz E.J., Middeldorp J.M., Rowe M., Rickinson A.B., et al. Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle. PLoS Pathog. 2009;5:e1000490. doi: 10.1371/journal.ppat.1000490. PubMed DOI PMC

Horst D., Favaloro V., Vilardi F., van Leeuwen H.C., Garstka M.A., Hislop A.D., Rabu C., Kremmer E., Rickinson A.B., High S., et al. EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. J. Immunol. 2011;186:3594–3605. doi: 10.4049/jimmunol.1002656. PubMed DOI

Wycisk A.I., Lin J., Loch S., Hobohm K., Funke J., Wieneke R., Koch J., Skach W.R., Mayerhofer P.U., Tampe R. Epstein-Barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J. Biol. Chem. 2011;286:41402–41412. doi: 10.1074/jbc.M111.237784. PubMed DOI PMC

Thorley-Lawson D.A., Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 2004;350:1328–1337. doi: 10.1056/NEJMra032015. PubMed DOI

Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P.M., Klein G., Kurilla M.G., Masucci M.G. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375:685–688. doi: 10.1038/375685a0. PubMed DOI

Levitskaya J., Sharipo A., Leonchiks A., Ciechanover A., Masucci M.G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA. 1997;94:12616–12621. doi: 10.1073/pnas.94.23.12616. PubMed DOI PMC

Hwu P., Du M.X., Lapointe R., Do M., Taylor M.W., Young H.A. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 2000;164:3596–3599. doi: 10.4049/jimmunol.164.7.3596. PubMed DOI

Munn D.H., Shafizadeh E., Attwood J.T., Bondarev I., Pashine A., Mellor A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 1999;189:1363–1372. doi: 10.1084/jem.189.9.1363. PubMed DOI PMC

Uyttenhove C., Pilotte L., Theate I., Stroobant V., Colau D., Parmentier N., Boon T., Van den Eynde B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003;9:1269–1274. doi: 10.1038/nm934. PubMed DOI

Nix D.A., Courdy S.J., Boucher K.M. Empirical methods for controlling false positives and estimating confidence in chip-seq peaks. BMC Bioinform. 2008;9:523. doi: 10.1186/1471-2105-9-523. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Pruitt K.D., Tatusova T., Brown G.R., Maglott D.R. NCBI reference sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–D135. doi: 10.1093/nar/gkr1079. PubMed DOI PMC

Huson D.H., Mitra S., Ruscheweyh H.J., Weber N., Schuster S.C. Integrative analysis of environmental sequences using megan4. Genome Res. 2011;21:1552–1560. doi: 10.1101/gr.120618.111. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. Star: Ultrafast universal RNA-Seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338. doi: 10.1038/nature11928. PubMed DOI

Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Tsai M.H., Raykova A., Klinke O., Bernhardt K., Gartner K., Leung C.S., Geletneky K., Sertel S., Munz C., Feederle R., et al. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep. 2013;5:458–470. doi: 10.1016/j.celrep.2013.09.012. PubMed DOI

Delecluse H.J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc. Natl. Acad. Sci. USA. 1998;95:8245–8250. doi: 10.1073/pnas.95.14.8245. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ubiquitin Modification of the Epstein-Barr Virus Immediate Early Transactivator Zta

. 2020 Oct 27 ; 94 (22) : . [epub] 20201027

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...