Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P20 GM121288
NIH HHS - United States
U54 GM104940
NIGMS NIH HHS - United States
R21 CA236549
NCI NIH HHS - United States
R01 CA243793
NCI NIH HHS - United States
P20 GM121288
NIGMS NIH HHS - United States
R01 AI106676
NIAID NIH HHS - United States
faculty research pilot grant
Tulane school of medicine
PubMed
31159203
PubMed Central
PMC6627930
DOI
10.3390/cancers11060759
PII: cancers11060759
Knihovny.cz E-zdroje
- Klíčová slova
- EBV, Epstein-Barr virus, NGS, NSCLC, next-generation sequencing, non-small cell lung cancer,
- Publikační typ
- časopisecké články MeSH
Previous investigations proposed a link between the Epstein-Barr virus (EBV) and lung cancer (LC), but the results are highly controversial largely due to the insufficient sample size and the inherent limitation of the traditional viral screening methods such as PCR. Unlike PCR, current next-generation sequencing (NGS) utilizes an unbiased method for the global assessment of all exogenous agents within a cancer sample with high sensitivity and specificity. In our current study, we aim to resolve this long-standing controversy by utilizing our unbiased NGS-based informatics approaches in conjunction with traditional molecular methods to investigate the role of EBV in a total of 1127 LC. In situ hybridization analysis of 110 LC and 10 normal lung samples detected EBV transcripts in 3 LC samples. Comprehensive virome analyses of RNA sequencing (RNA-seq) data sets from 1017 LC and 110 paired adjacent normal lung specimens revealed EBV transcripts in three lung squamous cell carcinoma and one lung adenocarcinoma samples. In the sample with the highest EBV coverage, transcripts from the BamHI A region accounted for the majority of EBV reads. Expression of EBNA-1, LMP-1 and LMP-2 was observed. A number of viral circular RNA candidates were also detected. Thus, we for the first time revealed a type II latency-like viral transcriptome in the setting of LC in vivo. The high-level expression of viral BamHI A transcripts in LC suggests a functional role of these transcripts, likely as long non-coding RNA. Analyses of cellular gene expression and stained tissue sections indicated an increased immune cell infiltration in the sample expressing high levels of EBV transcripts compared to samples expressing low EBV transcripts. Increased level of immune checkpoint blockade factors was also detected in the sample with higher levels of EBV transcripts, indicating an induced immune tolerance. Lastly, inhibition of immune pathways and activation of oncogenic pathways were detected in the sample with high EBV transcripts compared to the EBV-low LC indicating the direct regulation of cancer pathways by EBV. Taken together, our data support the notion that EBV likely plays a pathological role in a subset of LC.
Department of Medicine Louisiana State University Health Sciences Center New Orleans LA 70112 USA
Department of Medicine Tulane University Health Sciences Center New Orleans LA 70112 USA
Department of Neurosurgery University of Michigan Ann Arbor MI 48109 USA
Graduate School of Medicine Hokkaido University Sapporo Hokkaido 060 8638 Japan
Institute of Translational Research Ochsner Clinic Foundation New Orleans LA 70121 USA
Tulane University Health Sciences Center and Tulane Cancer Center New Orleans LA 70112 USA
Zobrazit více v PubMed
Engels E.A. Inflammation in the development of lung cancer: Epidemiological evidence. Expert Rev. Anticancer Ther. 2008;8:605–615. doi: 10.1586/14737140.8.4.605. PubMed DOI
Leroux C., Girard N., Cottin V., Greenland T., Mornex J.F., Archer F. Jaagsiekte sheep retrovirus (JSRV): From virus to lung cancer in sheep. Vet. Res. 2007;38:211–228. doi: 10.1051/vetres:2006060. PubMed DOI
Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI
Desgranges C., de-The G. Epstein-Barr virus specific iga serum antibodies in nasopharyngeal and other respiratory carcinomas. Int. J. Cancer. 1979;24:555–559. doi: 10.1002/ijc.2910240506. PubMed DOI
Roy A., Dey S., Chatterjee R. Prevalence of serum IgG and IgM antibodies against Epstein-Barr virus capsid antigen in indian patients with respiratory tract carcinomas. Neoplasma. 1994;41:29–33. PubMed
Lung M.L., Lam W.K., So S.Y., Lam W.P., Chan K.H., Ng M.H. Evidence that respiratory tract is major reservoir for Epstein-Barr virus. Lancet. 1985;1:889–892. doi: 10.1016/S0140-6736(85)91671-X. PubMed DOI
Begin L.R., Eskandari J., Joncas J., Panasci L. Epstein-Barr virus related lymphoepithelioma-like carcinoma of lung. J. Surg. Oncol. 1987;36:280–283. doi: 10.1002/jso.2930360413. PubMed DOI
Castro C.Y., Ostrowski M.L., Barrios R., Green L.K., Popper H.H., Powell S., Cagle P.T., Ro J.Y. Relationship between Epstein-Barr virus and lymphoepithelioma-like carcinoma of the lung: A clinicopathologic study of 6 cases and review of the literature. Hum. Pathol. 2001;32:863–872. doi: 10.1053/hupa.2001.26457. PubMed DOI
Wockel W., Hofler G., Popper H.H., Morresi A. Lymphoepithelioma-like carcinoma of the lung. Pathol. Res. Pract. 1995;191:1170–1174. doi: 10.1016/S0344-0338(11)80665-5. PubMed DOI
Higashiyama M., Doi O., Kodama K., Yokouchi H., Tateishi R., Horiuchi K., Mishima K. Lymphoepithelioma-like carcinoma of the lung: Analysis of two cases for Epstein-Barr virus infection. Hum. Pathol. 1995;26:1278–1282. doi: 10.1016/0046-8177(95)90206-6. PubMed DOI
Ferrara G., Nappi O. Lymphoepithelioma-like carcinoma of the lung. Two cases diagnosed in caucasian patients. Tumori. 1995;81:144–147. doi: 10.1177/030089169508100215. PubMed DOI
Chan J.K., Hui P.K., Tsang W.Y., Law C.K., Ma C.C., Yip T.T., Poon Y.F. Primary lymphoepithelioma-like carcinoma of the lung. A clinicopathologic study of 11 cases. Cancer. 1995;76:413–422. doi: 10.1002/1097-0142(19950801)76:3<413::AID-CNCR2820760311>3.0.CO;2-X. PubMed DOI
Han A.J., Xiong M., Zong Y.S. Association of epstein-barr virus with lymphoepithelioma-like carcinoma of the lung in southern china. Am. J. Clin. Pathol. 2000;114:220–226. doi: 10.1309/148K-ND54-6NJX-NA61. PubMed DOI
Gomez-Roman J.J., Martinez M.N., Fernandez S.L., Val-Bernal J.F. Epstein-Barr virus-associated adenocarcinomas and squamous-cell lung carcinomas. Mod. Pathol. 2009;22:530–537. doi: 10.1038/modpathol.2009.7. PubMed DOI
Chen F.F., Yan J.J., Lai W.W., Jin Y.T., Su I.J. Epstein-Barr virus-associated nonsmall cell lung carcinoma: Undifferentiated “lymphoepithelioma-like” carcinoma as a distinct entity with better prognosis. Cancer. 1998;82:2334–2342. doi: 10.1002/(SICI)1097-0142(19980615)82:12<2334::AID-CNCR6>3.0.CO;2-S. PubMed DOI
Li C.M., Han G.L., Zhang S.J. [Detection of Epstein-Barr virus in lung carcinoma tissue by in situ hybridization] Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2007;21:288–290. PubMed
Kasai K., Sato Y., Kameya T., Inoue H., Yoshimura H., Kon S., Kikuchi K. Incidence of latent infection of Epstein-Barr virus in lung cancers—An analysis of EBER1 expression in lung cancers by in situ hybridization. J. Pathol. 1994;174:257–265. doi: 10.1002/path.1711740405. PubMed DOI
Huber M., Pavlova B., Muhlberger H., Hollaus P., Lintner F. Detection of the Epstein-Barr virus in primary adenocarcinoma of the lung with signet-ring cells. Virchows Arch. 2002;441:25–30. doi: 10.1007/s00428-001-0591-8. PubMed DOI
Wang S., Xiong H., Yan S., Wu N., Lu Z. Identification and characterization of Epstein-Barr virus genomes in lung carcinoma biopsy samples by next-generation sequencing technology. Sci. Rep. 2016;6:26156. doi: 10.1038/srep26156. PubMed DOI PMC
Jafarian A.H., Omidi-Ashrafi A., Mohamadian-Roshan N., Karimi-Shahri M., Ghazvini K., Boroumand-Noughabi S. Association of Epstein Barr virus deoxyribonucleic acid with lung carcinoma. Indian J. Pathol. Microbiol. 2013;56:359–364. PubMed
Chu P.G., Cerilli L., Chen Y.Y., Mills S.E., Weiss L.M. Epstein-Barr virus plays no role in the tumorigenesis of small-cell carcinoma of the lung. Mod. Pathol. 2004;17:158–164. doi: 10.1038/modpathol.3800024. PubMed DOI
Lim W.T., Chuah K.L., Leong S.S., Tan E.H., Toh C.K. Assessment of human papillomavirus and Epstein-Barr virus in lung adenocarcinoma. Oncol. Rep. 2009;21:971–975. doi: 10.3892/or_00000310. PubMed DOI
Koshiol J., Gulley M.L., Zhao Y., Rubagotti M., Marincola F.M., Rotunno M., Tang W., Bergen A.W., Bertazzi P.A., Roy D., et al. Epstein-Barr virus micrornas and lung cancer. Br. J. Cancer. 2011;105:320–326. doi: 10.1038/bjc.2011.221. PubMed DOI PMC
Lin Z., Xu G., Deng N., Taylor C., Zhu D., Flemington E.K. Quantitative and qualitative RNA-Seq-based evaluation of Epstein-Barr virus transcription in type I latency Burkitt’s lymphoma cells. J. Virol. 2010;84:13053–13058. doi: 10.1128/JVI.01521-10. PubMed DOI PMC
Lin Z., Puetter A., Coco J., Xu G., Strong M.J., Wang X., Fewell C., Baddoo M., Taylor C., Flemington E.K. Detection of murine leukemia virus in the Epstein-Barr virus-positive human B-cell line JY, using a computational RNA-Seq-based exogenous agent detection pipeline, PARSES. J. Virol. 2012;86:2970–2977. doi: 10.1128/JVI.06717-11. PubMed DOI PMC
Lin Z., Wang X., Strong M.J., Concha M., Baddoo M., Xu G., Baribault C., Fewell C., Hulme W., Hedges D., et al. Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J. Virol. 2013;87:1172–1182. doi: 10.1128/JVI.02517-12. PubMed DOI PMC
Strong M.J., O’Grady T., Lin Z., Xu G., Baddoo M., Parsons C., Zhang K., Taylor C.M., Flemington E.K. Epstein-Barr virus and human herpesvirus 6 detection in a non-Hodgkin’s diffuse large B-cell lymphoma cohort by using RNA sequencing. J. Virol. 2013;87:13059–13062. doi: 10.1128/JVI.02380-13. PubMed DOI PMC
Strong M.J., Xu G., Coco J., Baribault C., Vinay D.S., Lacey M.R., Strong A.L., Lehman T.A., Seddon M.B., Lin Z., et al. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: Implications for possible immune adjuvant therapy. PLoS Pathog. 2013;9:e1003341. doi: 10.1371/journal.ppat.1003341. PubMed DOI PMC
Strong M.J., Baddoo M., Nanbo A., Xu M., Puetter A., Lin Z. Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes. J. Virol. 2014;88:10696–10704. doi: 10.1128/JVI.01457-14. PubMed DOI PMC
Strong M.J., Laskow T., Nakhoul H., Blanchard E., Liu Y., Wang X., Baddoo M., Lin Z., Yin Q., Flemington E.K. Latent expression of the Epstein-Barr virus (EBV)-encoded major histocompatibility complex class I TAP inhibitor, BNLF2a, in EBV-positive gastric carcinomas. J. Virol. 2015;89:10110–10114. doi: 10.1128/JVI.01110-15. PubMed DOI PMC
Strong M.J., Blanchard E.T., Lin Z., Morris C.A., Baddoo M., Taylor C.M., Ware M.L., Flemington E.K. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus—Tumor association. Acta Neuropathol. Commun. 2016;4:71. doi: 10.1186/s40478-016-0338-z. PubMed DOI PMC
Feng H., Shuda M., Chang Y., Moore P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–1100. doi: 10.1126/science.1152586. PubMed DOI PMC
Castellarin M., Warren R.L., Freeman J.D., Dreolini L., Krzywinski M., Strauss J., Barnes R., Watson P., Allen-Vercoe E., Moore R.A., et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. doi: 10.1101/gr.126516.111. PubMed DOI PMC
Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., et al. Genomic analysis identifies association of fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298. doi: 10.1101/gr.126573.111. PubMed DOI PMC
Xu G., Strong M.J., Lacey M.R., Baribault C., Flemington E.K., Taylor C.M. RNA CoMPASS: A dual approach for pathogen and host transcriptome analysis of RNA-Seq datasets. PLoS ONE. 2014;9:e89445. doi: 10.1371/journal.pone.0089445. PubMed DOI PMC
Lerner M.R., Andrews N.C., Miller G., Steitz J.A. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA. 1981;78:805–809. doi: 10.1073/pnas.78.2.805. PubMed DOI PMC
Arrand J.R., Rymo L. Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J. Virol. 1982;41:376–389. PubMed PMC
Schwemmle M., Clemens M.J., Hilse K., Pfeifer K., Troster H., Muller W.E., Bachmann M. Localization of Epstein-Barr virus-encoded RNAs EBER-1 and EBER-2 in interphase and mitotic Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA. 1992;89:10292–10296. doi: 10.1073/pnas.89.21.10292. PubMed DOI PMC
Ungerleider N., Concha M., Lin Z., Roberts C., Wang X., Cao S., Baddoo M., Moss W.N., Yu Y., Seddon M., et al. The Epstein Barr virus circrnaome. PLoS Pathog. 2018;14:e1007206. doi: 10.1371/journal.ppat.1007206. PubMed DOI PMC
Leng N., Dawson J.A., Thomson J.A., Ruotti V., Rissman A.I., Smits B.M., Haag J.D., Gould M.N., Stewart R.M., Kendziorski C. EBSeq: An empirical Bayes hierarchical model for inference in RNA-Seq experiments. Bioinformatics. 2013;29:1035–1043. doi: 10.1093/bioinformatics/btt087. PubMed DOI PMC
Dutta D., Dutta S., Veettil M.V., Roy A., Ansari M.A., Iqbal J., Chikoti L., Kumar B., Johnson K.E., Chandran B. Brca1 regulates ifi16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses. PLoS Pathog. 2015;11:e1005030. doi: 10.1371/journal.ppat.1005030. PubMed DOI PMC
Liao G., Huang J., Fixman E.D., Hayward S.D. The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J. Virol. 2005;79:245–256. doi: 10.1128/JVI.79.1.245-256.2005. PubMed DOI PMC
Maier S., Staffler G., Hartmann A., Hock J., Henning K., Grabusic K., Mailhammer R., Hoffmann R., Wilmanns M., Lang R., et al. Cellular target genes of Epstein-Barr virus nuclear antigen 2. J. Virol. 2006;80:9761–9771. doi: 10.1128/JVI.00665-06. PubMed DOI PMC
Yin Q., McBride J., Fewell C., Lacey M., Wang X., Lin Z., Cameron J., Flemington E.K. Microrna-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J. Virol. 2008;82:5295–5306. doi: 10.1128/JVI.02380-07. PubMed DOI PMC
Cameron J.E., Fewell C., Yin Q., McBride J., Wang X., Lin Z., Flemington E.K. Epstein-Barr virus growth/latency III program alters cellular microrna expression. Virology. 2008;382:257–266. doi: 10.1016/j.virol.2008.09.018. PubMed DOI PMC
Flavell J.R., Baumforth K.R., Wood V.H., Davies G.L., Wei W., Reynolds G.M., Morgan S., Boyce A., Kelly G.L., Young L.S., et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood. 2008;111:292–301. doi: 10.1182/blood-2006-11-059881. PubMed DOI
Newman A.M., Liu C.L., Green M.R., Gentles A.J., Feng W., Xu Y., Hoang C.D., Diehn M., Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 2015;12:453–457. doi: 10.1038/nmeth.3337. PubMed DOI PMC
Tang D., Yue L., Yao R., Zhou L., Yang Y., Lu L., Gao W. P53 prevent tumor invasion and metastasis by down-regulating ido in lung cancer. Oncotarget. 2017;8:54548–54557. doi: 10.18632/oncotarget.17408. PubMed DOI PMC
Yao H., Wang H., Li C., Fang J.Y., Xu J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front. Immunol. 2018;9:1774. doi: 10.3389/fimmu.2018.01774. PubMed DOI PMC
Zhang H., Dutta P., Liu J., Sabri N., Song Y., Li W.X., Li J. Tumour cell-intrinsic CTLA4 regulates PD-l1 expression in non-small cell lung cancer. J. Cell. Mol. Med. 2019;23:535–542. doi: 10.1111/jcmm.13956. PubMed DOI PMC
Villarroel-Espindola F., Yu X., Datar I., Mani N., Sanmamed M., Velcheti V., Syrigos K., Toki M., Zhao H., Chen L., et al. Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin. Cancer Res. 2018;24:1562–1573. doi: 10.1158/1078-0432.CCR-17-2542. PubMed DOI PMC
Thun M.J., Henley S.J., Calle E.E. Tobacco use and cancer: An epidemiologic perspective for geneticists. Oncogene. 2002;21:7307–7325. doi: 10.1038/sj.onc.1205807. PubMed DOI
Sun S., Schiller J.H., Gazdar A.F. Lung cancer in never smokers—A different disease. Nat. Rev. Cancer. 2007;7:778–790. doi: 10.1038/nrc2190. PubMed DOI
Ambinder R.F. Gammaherpesviruses and “Hit-and-Run” oncogenesis. Am. J. Pathol. 2000;156:1–3. doi: 10.1016/S0002-9440(10)64697-4. PubMed DOI PMC
Hu H., Luo M.L., Desmedt C., Nabavi S., Yadegarynia S., Hong A., Konstantinopoulos P.A., Gabrielson E., Hines-Boykin R., Pihan G., et al. Epstein-Barr virus infection of mammary epithelial cells promotes malignant transformation. EBioMedicine. 2016;9:148–160. doi: 10.1016/j.ebiom.2016.05.025. PubMed DOI PMC
Ho J.C., Wong M.P., Lam W.K. Lymphoepithelioma-like carcinoma of the lung. Respirology. 2006;11:539–545. doi: 10.1111/j.1440-1843.2006.00910.x. PubMed DOI
Thun M.J., Hannan L.M., Adams-Campbell L.L., Boffetta P., Buring J.E., Feskanich D., Flanders W.D., Jee S.H., Katanoda K., Kolonel L.N., et al. Lung cancer occurrence in never-smokers: An analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008;5:e185. doi: 10.1371/journal.pmed.0050185. PubMed DOI PMC
Al-Mozaini M., Bodelon G., Karstegl C.E., Jin B., Al-Ahdal M., Farrell P.J. Epstein-Barr virus BART gene expression. J. Gen. Virol. 2009;90:307–316. doi: 10.1099/vir.0.006551-0. PubMed DOI
Smith P.R., de Jesus O., Turner D., Hollyoake M., Karstegl C.E., Griffin B.E., Karran L., Wang Y., Hayward S.D., Farrell P.J. Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J. Virol. 2000;74:3082–3092. doi: 10.1128/JVI.74.7.3082-3092.2000. PubMed DOI PMC
Marquitz A.R., Mathur A., Edwards R.H., Raab-Traub N. Host gene expression is regulated by two types of noncoding rnas transcribed from the Epstein-Barr virus bamhi a rightward transcript region. J. Virol. 2015;89:11256–11268. doi: 10.1128/JVI.01492-15. PubMed DOI PMC
Lin Z., Flemington E.K. Mirnas in the pathogenesis of oncogenic human viruses. Cancer Lett. 2011;305:186–199. doi: 10.1016/j.canlet.2010.08.018. PubMed DOI PMC
Concha M., Wang X., Cao S., Baddoo M., Fewell C., Lin Z., Hulme W., Hedges D., McBride J., Flemington E.K. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J. Virol. 2012;86:1458–1467. doi: 10.1128/JVI.06537-11. PubMed DOI PMC
Fox C.P., Haigh T.A., Taylor G.S., Long H.M., Lee S.P., Shannon-Lowe C., O’Connor S., Bollard C.M., Iqbal J., Chan W.C., et al. A novel latent membrane 2 transcript expressed in Epstein-Barr virus-positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood. 2010;116:3695–3704. doi: 10.1182/blood-2010-06-292268. PubMed DOI PMC
Cen O., Longnecker R. Latent membrane protein 2 (LMP2) Curr. Top. Microbiol. Immunol. 2015;391:151–180. PubMed
Bell M.J., Abbott R.J., Croft N.P., Hislop A.D., Burrows S.R. An HLA-A2-restricted T-cell epitope mapped to the BNLF2a immune evasion protein of Epstein-Barr virus that inhibits TAP. J. Virol. 2009;83:2783–2788. doi: 10.1128/JVI.01724-08. PubMed DOI PMC
Horst D., van Leeuwen D., Croft N.P., Garstka M.A., Hislop A.D., Kremmer E., Rickinson A.B., Wiertz E.J., Ressing M.E. Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J. Immunol. 2009;182:2313–2324. doi: 10.4049/jimmunol.0803218. PubMed DOI
Croft N.P., Shannon-Lowe C., Bell A.I., Horst D., Kremmer E., Ressing M.E., Wiertz E.J., Middeldorp J.M., Rowe M., Rickinson A.B., et al. Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle. PLoS Pathog. 2009;5:e1000490. doi: 10.1371/journal.ppat.1000490. PubMed DOI PMC
Horst D., Favaloro V., Vilardi F., van Leeuwen H.C., Garstka M.A., Hislop A.D., Rabu C., Kremmer E., Rickinson A.B., High S., et al. EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. J. Immunol. 2011;186:3594–3605. doi: 10.4049/jimmunol.1002656. PubMed DOI
Wycisk A.I., Lin J., Loch S., Hobohm K., Funke J., Wieneke R., Koch J., Skach W.R., Mayerhofer P.U., Tampe R. Epstein-Barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J. Biol. Chem. 2011;286:41402–41412. doi: 10.1074/jbc.M111.237784. PubMed DOI PMC
Thorley-Lawson D.A., Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 2004;350:1328–1337. doi: 10.1056/NEJMra032015. PubMed DOI
Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P.M., Klein G., Kurilla M.G., Masucci M.G. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375:685–688. doi: 10.1038/375685a0. PubMed DOI
Levitskaya J., Sharipo A., Leonchiks A., Ciechanover A., Masucci M.G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA. 1997;94:12616–12621. doi: 10.1073/pnas.94.23.12616. PubMed DOI PMC
Hwu P., Du M.X., Lapointe R., Do M., Taylor M.W., Young H.A. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 2000;164:3596–3599. doi: 10.4049/jimmunol.164.7.3596. PubMed DOI
Munn D.H., Shafizadeh E., Attwood J.T., Bondarev I., Pashine A., Mellor A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 1999;189:1363–1372. doi: 10.1084/jem.189.9.1363. PubMed DOI PMC
Uyttenhove C., Pilotte L., Theate I., Stroobant V., Colau D., Parmentier N., Boon T., Van den Eynde B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003;9:1269–1274. doi: 10.1038/nm934. PubMed DOI
Nix D.A., Courdy S.J., Boucher K.M. Empirical methods for controlling false positives and estimating confidence in chip-seq peaks. BMC Bioinform. 2008;9:523. doi: 10.1186/1471-2105-9-523. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Pruitt K.D., Tatusova T., Brown G.R., Maglott D.R. NCBI reference sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–D135. doi: 10.1093/nar/gkr1079. PubMed DOI PMC
Huson D.H., Mitra S., Ruscheweyh H.J., Weber N., Schuster S.C. Integrative analysis of environmental sequences using megan4. Genome Res. 2011;21:1552–1560. doi: 10.1101/gr.120618.111. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. Star: Ultrafast universal RNA-Seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338. doi: 10.1038/nature11928. PubMed DOI
Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Tsai M.H., Raykova A., Klinke O., Bernhardt K., Gartner K., Leung C.S., Geletneky K., Sertel S., Munz C., Feederle R., et al. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep. 2013;5:458–470. doi: 10.1016/j.celrep.2013.09.012. PubMed DOI
Delecluse H.J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc. Natl. Acad. Sci. USA. 1998;95:8245–8250. doi: 10.1073/pnas.95.14.8245. PubMed DOI PMC
Ubiquitin Modification of the Epstein-Barr Virus Immediate Early Transactivator Zta