Dynamics and necessity of SIRT1 for maternal-zygotic transition

. 2024 Sep 16 ; 14 (1) : 21598. [epub] 20240916

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39285243

Grantová podpora
MED/DIAG Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260 651 Ministerstvo Školství, Mládeže a Tělovýchovy,Czechia
QL24010123 Technologická Agentura České Republiky
23-07532S Grantová Agentura České Republiky
DS-FR-22-0003 Agentúra na Podporu Výskumu a Vývoja
MZE-RO0723 Ministerstvo Zemědělství
00064165 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 39285243
PubMed Central PMC11405870
DOI 10.1038/s41598-024-72595-6
PII: 10.1038/s41598-024-72595-6
Knihovny.cz E-zdroje

Dynamic changes in maternal‒zygotic transition (MZT) require complex regulation of zygote formation, maternal transcript decay, embryonic genome activation (EGA), and cell cycle progression. Although these changes are well described, some key regulatory factors are still elusive. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, is a versatile driver of MZT via its epigenetic and nonepigenetic substrates. This study focused on the dynamics of SIRT1 in early embryos and its contribution to MZT. A conditional SIRT1-deficient knockout mouse model was used, accompanied by porcine and human embryos. Embryos across mammalian species showed the prominent localization of SIRT1 in the nucleus throughout early embryonic development. Accordingly, SIRT1 interacts with histone H4 on lysine K16 (H4K16) in both mouse and human blastocysts. While maternal SIRT1 is dispensable for MZT, at least one allele of embryonic Sirt1 is required for early embryonic development around the time of EGA. This role of SIRT1 is surprisingly mediated via a transcription-independent mode of action.

Zobrazit více v PubMed

Nevoral, J. & Sutovsky, P. Epigenome modification and ubiquitin-dependent proteolysis during pronuclear development of the mammalian zygote: Animal models to study pronuclear development. DOI

Sha, Q. Q. PubMed DOI PMC

Abe, K. I. PubMed DOI PMC

Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. PubMed DOI PMC

Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. PubMed DOI

Landry, J. PubMed DOI PMC

Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. PubMed DOI PMC

Li, J. PubMed DOI PMC

Jęśko, H. & Strosznajder, R. P. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. PubMed DOI

Ma, R. PubMed DOI PMC

Vaquero, A. PubMed DOI PMC

Adamkova, K. PubMed DOI PMC

Vaquero, A. PubMed DOI

Liu, Y., Zhao, L. W., Shen, J. L., Fan, H. Y. & Jin, Y. Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development. PubMed DOI PMC

Taylor, G. C. A., Eskeland, R., Hekimoglu-Balkan, B., Pradeepa, M. M. & Bickmore, W. A. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. PubMed DOI PMC

McBurney, M. W. PubMed DOI PMC

Coussens, M., Maresh, J. G., Yanagimachi, R., Maeda, G. & Allsopp, R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PubMed DOI PMC

Iljas, J. D., Wei, Z. & Homer, H. A. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. PubMed DOI PMC

Mouchiroud, L. PubMed DOI PMC

Mahlknetch, U. & Voelter-Mahlknecht, S. Chromosomal characterization and localization of the NAD+-dependent histone deacetylase gene sirtuin 1 in the mouse. PubMed

Lewandoski, M., Wassarman, K. M. & Martin, G. R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. PubMed DOI

Nevoral, J. PubMed DOI PMC

Adamkova, K. PubMed DOI PMC

Iniesta-Cuerda, M., Havránková, J., Řimnáčová, H., García-Álvarez, O. & Nevoral, J. Male SIRT1 insufficiency leads to sperm with decreased ability to hyperactivate and fertilize. PubMed DOI

Shao, G. B., Ding, H. M. & Gong, A. H. Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. PubMed DOI

Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. PubMed DOI

Hori, Y. S., Kuno, A., Hosoda, R. & Horio, Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PubMed DOI PMC

Di Emidio, G. PubMed DOI

Zhang, W. PubMed DOI PMC

Rasti, G. PubMed DOI PMC

Benc, M. PubMed DOI

Benc, M. PubMed DOI PMC

Wang, Q. & Latham, K. E. Requirement for protein synthesis during embryonic genome activation in mice. PubMed DOI

Zhang, H. PubMed DOI PMC

Liu, X. PubMed DOI PMC

Hu, Z. PubMed DOI PMC

Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. PubMed DOI

Ooga, M. PubMed DOI PMC

Ou, X. PubMed DOI PMC

Samata, M. PubMed DOI

Yuan, Y. PubMed DOI PMC

Jílek, F., Hüttelová, R., Petr, J., Holubová, M. & Rozinek, J. Activation of pig oocytes using calcium ionophore: Effect of protein synthesis inhibitor cycloheximide. PubMed DOI

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. K. & Iwamura, S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. PubMed DOI

Jílek, F., Hüttelová, R., Petr, J., Holubová, M. & Rozinek, J. Activation of Pig Oocytes using Calcium Ionophore: Effect of the Protein Kinase Inhibitor 6-dimethyl aminopurine. PubMed

Blengini, C. S. PubMed PMC

Knoblochova, L. PubMed DOI PMC

Sarkans, U. PubMed DOI PMC

Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M. & Trounson, A. O. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. PubMed DOI

Malik, A. N., Czajka, A. & Cunningham, P. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. PubMed DOI

Tommaso, D. I. PubMed DOI

Ewels, P. A. PubMed DOI

Cunningham, F. PubMed DOI PMC

Dobin, A. PubMed DOI PMC

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. PubMed DOI PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC

Kolesnikov, N. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...