Dynamics and necessity of SIRT1 for maternal-zygotic transition
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MED/DIAG
Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260 651
Ministerstvo Školství, Mládeže a Tělovýchovy,Czechia
QL24010123
Technologická Agentura České Republiky
23-07532S
Grantová Agentura České Republiky
DS-FR-22-0003
Agentúra na Podporu Výskumu a Vývoja
MZE-RO0723
Ministerstvo Zemědělství
00064165
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
39285243
PubMed Central
PMC11405870
DOI
10.1038/s41598-024-72595-6
PII: 10.1038/s41598-024-72595-6
Knihovny.cz E-zdroje
- Klíčová slova
- Embryo, Embryonic genome activation, Epigenetics, Histone deacetylase, Oocyte, zygote,
- MeSH
- blastocysta metabolismus MeSH
- embryo savčí metabolismus MeSH
- embryonální vývoj * genetika MeSH
- histony metabolismus MeSH
- lidé MeSH
- myši knockoutované * MeSH
- myši MeSH
- prasata MeSH
- sirtuin 1 * metabolismus genetika MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- zygota * metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
- SIRT1 protein, human MeSH Prohlížeč
- Sirt1 protein, mouse MeSH Prohlížeč
- sirtuin 1 * MeSH
Dynamic changes in maternal‒zygotic transition (MZT) require complex regulation of zygote formation, maternal transcript decay, embryonic genome activation (EGA), and cell cycle progression. Although these changes are well described, some key regulatory factors are still elusive. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, is a versatile driver of MZT via its epigenetic and nonepigenetic substrates. This study focused on the dynamics of SIRT1 in early embryos and its contribution to MZT. A conditional SIRT1-deficient knockout mouse model was used, accompanied by porcine and human embryos. Embryos across mammalian species showed the prominent localization of SIRT1 in the nucleus throughout early embryonic development. Accordingly, SIRT1 interacts with histone H4 on lysine K16 (H4K16) in both mouse and human blastocysts. While maternal SIRT1 is dispensable for MZT, at least one allele of embryonic Sirt1 is required for early embryonic development around the time of EGA. This role of SIRT1 is surprisingly mediated via a transcription-independent mode of action.
Institute of Animal Science Přátelství 815 Uhříněves 104 00 Prague Czech Republic
Pronatal Sanatorium Na Dlouhé Mezi 12 4 147 00 Prague 4 Czech Republic
Zobrazit více v PubMed
Nevoral, J. & Sutovsky, P. Epigenome modification and ubiquitin-dependent proteolysis during pronuclear development of the mammalian zygote: Animal models to study pronuclear development. DOI
Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. PubMed DOI PMC
Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. PubMed DOI
Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. PubMed DOI PMC
Jęśko, H. & Strosznajder, R. P. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. PubMed DOI
Liu, Y., Zhao, L. W., Shen, J. L., Fan, H. Y. & Jin, Y. Maternal DCAF13 Regulates Chromatin Tightness to Contribute to Embryonic Development. PubMed DOI PMC
Taylor, G. C. A., Eskeland, R., Hekimoglu-Balkan, B., Pradeepa, M. M. & Bickmore, W. A. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. PubMed DOI PMC
McBurney, M. W. PubMed DOI PMC
Coussens, M., Maresh, J. G., Yanagimachi, R., Maeda, G. & Allsopp, R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PubMed DOI PMC
Iljas, J. D., Wei, Z. & Homer, H. A. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. PubMed DOI PMC
Mahlknetch, U. & Voelter-Mahlknecht, S. Chromosomal characterization and localization of the NAD+-dependent histone deacetylase gene sirtuin 1 in the mouse. PubMed
Lewandoski, M., Wassarman, K. M. & Martin, G. R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. PubMed DOI
Iniesta-Cuerda, M., Havránková, J., Řimnáčová, H., García-Álvarez, O. & Nevoral, J. Male SIRT1 insufficiency leads to sperm with decreased ability to hyperactivate and fertilize. PubMed DOI
Shao, G. B., Ding, H. M. & Gong, A. H. Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. PubMed DOI
Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. PubMed DOI
Hori, Y. S., Kuno, A., Hosoda, R. & Horio, Y. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PubMed DOI PMC
Wang, Q. & Latham, K. E. Requirement for protein synthesis during embryonic genome activation in mice. PubMed DOI
Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. PubMed DOI
Jílek, F., Hüttelová, R., Petr, J., Holubová, M. & Rozinek, J. Activation of pig oocytes using calcium ionophore: Effect of protein synthesis inhibitor cycloheximide. PubMed DOI
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. K. & Iwamura, S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. PubMed DOI
Jílek, F., Hüttelová, R., Petr, J., Holubová, M. & Rozinek, J. Activation of Pig Oocytes using Calcium Ionophore: Effect of the Protein Kinase Inhibitor 6-dimethyl aminopurine. PubMed
Knoblochova, L. PubMed DOI PMC
Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M. & Trounson, A. O. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. PubMed DOI
Malik, A. N., Czajka, A. & Cunningham, P. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. PubMed DOI
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. PubMed DOI PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC