Improving the Quality of Oocytes with the Help of Nucleolotransfer Therapy

. 2021 Apr 02 ; 14 (4) : . [epub] 20210402

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33918523

Grantová podpora
SK-FR-19-0010 Agentúra na Podporu Výskumu a Vývoja
1/0001/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0167/20 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2020-2090/4 FVMS-IPR-02
CZ.02.1.01/0.0/0.0/15_003/0000460 Operational Programme Research, Development and Education
8021-00048B Danish Council for Independent Research/Natural Sciences (FNU)
26220220180 European Community

The nucleolus is an important nucleus sub-organelle found in almost all eukaryotic cells. On the one hand, it is known as a differentiated active site of ribosome biogenesis in somatic cells, but on the other hand, in fully grown oocytes, zygotes, and early embryos (up to the major embryonic genome activation), it is in the form of a particular homogenous and compact structure called a fibrillar sphere. Nowadays, thanks to recent studies, we know many important functions of this, no doubt, interesting membraneless nucleus sub-organelle involved in oocyte maturation, embryonic genome activation, rRNA synthesis, etc. However, many questions are still unexplained and remain a mystery. Our aim is to create a comprehensive overview of the recent knowledge on the fibrillar sphere and envision how this knowledge could be utilized in further research in the field of biotechnology and nucleolotransfer therapy.

Zobrazit více v PubMed

Crozet N. Nucleolar structure and RNA synthesis in mammalian oocytes. J. Reprod. Fertil. Suppl. 1989;38:9–16. PubMed

Olson M.O., Dundr M., Szebeni A. The nucleolus: An old factory with unexpected capabilities. Trends Cell Biol. 2000;10:189–196. doi: 10.1016/S0962-8924(00)01738-4. PubMed DOI

Carmo-Fonseca M., Mendes-Soares L., Campos I. To be or not to be in the nucleolus. Nat. Cell Biol. 2000;2:E107–E112. doi: 10.1038/35014078. PubMed DOI

Visintin R., Amon A. The nucleolus: The magician’s hat for cell cycle tricks. Curr. Opin. Cell Biol. 2000;12:372–377. doi: 10.1016/S0955-0674(00)00102-2. PubMed DOI

Watanabe Y. Monopolar attachment by polo. Nat. Cell Biol. 2003;5:379–382. doi: 10.1038/ncb0503-379. PubMed DOI

Kyogoku H., Ogushi S., Miyano T. Nucleoli from growing oocytes support the development of enucleolated full-grown oocytes in the pig. Mol. Reprod. Dev. 2010;77:167–173. doi: 10.1002/mrd.21126. PubMed DOI

Chouinard L.A. A light- and electron-microscope study of the nucleolus during growth of the oocyte in the prepubertal mouse. J. Cell Sci. 1971;9:637–663. PubMed

Chouinard L.A. A light- and electron-microscope study of the oocyte nucleus during development of the antral follicle in the prepubertal mouse. J. Cell Sci. 1975;17:589–615. PubMed

Bonnet-Garnier A., Feuerstein P., Chebrout M., Fleurot R., Jan H.-U., Debey P., Beaujean N. Genome organization and epigenetic marks in mouse germinal vesicle oocytes. Int. J. Dev. Biol. 2012;56:877–887. doi: 10.1387/ijdb.120149ab. PubMed DOI

Shishova K.V., Khodarovich Y.M., Lavrentyeva E.A., Zatsepina O.V. High-Resolution microscopy of active ribosomal genes and key members of the RRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes. Exp. Cell Res. 2015;337:208–218. doi: 10.1016/j.yexcr.2015.07.024. PubMed DOI

Szöllösi M.S., Debey P., Szöllösi D., Rime H., Vautier D. Chromatin behaviour under influence of puromycin and 6-DMAP at different stages of mouse oocyte maturation. Chromosoma. 1991;100:339–354. doi: 10.1007/BF00360533. PubMed DOI

Fléchon J.E., Kopecný V. The nature of the “nucleolus precursor body” in early preimplantation embryos: A review of fine-structure cytochemical, immunocytochemical and autoradiographic data related to nucleolar function. Zygote. 1998;6:183–191. doi: 10.1017/S0967199498000112. PubMed DOI

Ogushi S., Palmieri C., Fulka H., Saitou M., Miyano T., Fulka J. The maternal nucleolus is essential for early embryonic development in mammals. Science. 2008;319:613–616. doi: 10.1126/science.1151276. PubMed DOI

Fulka H., Langerova A. Nucleoli in embryos: A central structural platform for embryonic chromatin remodeling? Chromosome Res. 2019;27:129–140. doi: 10.1007/s10577-018-9590-3. PubMed DOI

Schultz R.M., Montgomery R.R., Belanoff J.R. Regulation of Mouse oocyte meiotic maturation: Implication of a decrease in oocyte CAMP and protein dephosphorylation in commitment to resume meiosis. Dev. Biol. 1983;97:264–273. doi: 10.1016/0012-1606(83)90085-4. PubMed DOI

Bornslaeger E.A., Mattei P., Schultz R.M. Involvement of CAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev. Biol. 1986;114:453–462. doi: 10.1016/0012-1606(86)90209-5. PubMed DOI

Sun Q.Y., Lu Q., Breitbart H., Chen D.Y. CAMP inhibits mitogen-activated protein (MAP) kinase activation and resumption of meiosis, but exerts no effects after spontaneous germinal vesicle breakdown (GVBD) in mouse oocytes. Reprod. Fertil. Dev. 1999;11:81–86. doi: 10.1071/RD99038. PubMed DOI

Fulka H., Rychtarova J., Loi P. The Nucleolus-like and Precursor Bodies of Mammalian Oocytes and Embryos and Their Possible Role in Post-Fertilization Centromere Remodelling. Biochem. Soc. Trans. 2020;48:581–593. doi: 10.1042/BST20190847. PubMed DOI

Fulka J., Moor R.M., Loi P., Fulka J. Enucleolation of porcine oocytes. Theriogenology. 2003;59:1879–1885. doi: 10.1016/S0093-691X(02)01226-8. PubMed DOI

Benc M., Fulka J.J., Strejček F., Morovič M., Murín M., Martínková S., Jettmarová D., Laurinčík J. Enucleolation and Nucleolus Transfer in Mammalian Oocytes and Zygotes. Int. J. Dev. Biol. 2019;63:253–258. doi: 10.1387/ijdb.190002mb. PubMed DOI

Kyogoku H., Kitajima T.S., Miyano T. Nucleolus precursor body (NPB): A distinct structure in mammalian oocytes and zygotes. Nucleus. 2014;5:493–498. doi: 10.4161/19491034.2014.990858. PubMed DOI PMC

Fulka H., Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition. Development. 2014;141:1694–1704. doi: 10.1242/dev.105940. PubMed DOI

Schultz L.D., Kay B.K., Gall J.G. In vitro rna synthesis in oocyte nuclei of the newt notophthalmus. Chromosoma. 1981;82:171–187. doi: 10.1007/BF00286102. PubMed DOI

Ogushi S., Saitou M. The nucleolus in the mouse oocyte is required for the early step of both female and male pronucleus organization. J. Reprod. Dev. 2010;56:495–501. doi: 10.1262/jrd.09-184H. PubMed DOI

Ogushi S., Yamagata K., Obuse C., Furuta K., Wakayama T., Matzuk M.M., Saitou M. Reconstitution of the oocyte nucleolus in mice through a single nucleolar protein, NPM2. J. Cell Sci. 2017;130:2416–2429. doi: 10.1242/jcs.195875. PubMed DOI PMC

Kyogoku H., Fulka J., Wakayama T., Miyano T. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes. Development. 2014;141:2255–2259. doi: 10.1242/dev.106948. PubMed DOI

Fulka H., Fulka J. Nucleolar transplantation in oocytes and zygotes: Challenges for further research. Mol. Hum. Reprod. 2010;16:63–67. doi: 10.1093/molehr/gap088. PubMed DOI

Kimura Y., Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 1995;52:709–720. doi: 10.1095/biolreprod52.4.709. PubMed DOI

Fulka J.J., Benc M., Loi P., Langerova A., Fulka H. Function of atypical mammalian oocyte/zygote nucleoli and its implications for reproductive biology and medicine. Int. J. Dev. Biol. 2019;63:105–112. doi: 10.1387/ijdb.180329jf. PubMed DOI

Fulka H., Martinkova S., Kyogoku H., Langerova A., Fulka J. Production of giant mouse oocyte nucleoli and assessment of their protein content. J. Reprod. Dev. 2012;58:371–376. doi: 10.1262/jrd.2011-004. PubMed DOI

Alberts B., Johnson A., Lewis J., Roberts K., Raff M., Walter P. Molecular Biology of the Cell. Garland Science; New York, NY, USA: 2008.

Kovalská M., Petrovičová I., Strejček F., Adamkov M., Halašová E., Lehotský J., Laurinčík J., Østrup O. The role of RNA-polymerase II transcription in embryonic nucleologenesis by bovine embryos. Biologia. 2010;65:552–557. doi: 10.2478/s11756-010-0046-2. DOI

Morovic M., Strejcek F., Nakagawa S., Deshmukh R.S., Murin M., Benc M., Fulka H., Kyogoku H., Pendovski L., Fulka J., et al. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes. Zygote. 2017;25:675–685. doi: 10.1017/S0967199417000491. PubMed DOI

Benc M., Martinkova S., Rychtarova J., Fulka J., Bartkova A., Fulka H., Laurincik J. Assessing the effect of interspecies oocyte nucleolar material dosage on embryonic development. Theriogenology. 2020;155:17–24. doi: 10.1016/j.theriogenology.2020.06.001. PubMed DOI

Murin M., Strejcek F., Bartkova A., Morovic M., Benc M., Prochazka R., Lucas-Hahn A., Pendovski L., Laurincik J. Intranuclear characteristics of pig oocytes stained with brilliant cresyl blue and nucleologenesis of resulting embryos. Zygote. 2019;27:232–240. doi: 10.1017/S0967199419000352. PubMed DOI

Burns K.H., Viveiros M.M., Ren Y., Wang P., DeMayo F.J., Frail D.E., Eppig J.J., Matzuk M.M. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science. 2003;300:633–636. doi: 10.1126/science.1081813. PubMed DOI

Tesarik J., Greco E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum. Reprod. 1999;14:1318–1323. doi: 10.1093/humrep/14.5.1318. PubMed DOI

Gianaroli L., Magli M.C., Ferraretti A.P., Fortini D., Grieco N. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil. Steril. 2003;80:341–349. doi: 10.1016/S0015-0282(03)00596-X. PubMed DOI

Hyttel P. Oocyte Maturation and Fertilization: A Long History for a Short Event. Bentham Books; Sharjah, United Arab Emirates: 2011. Electron microscopy of mammalian oocyte development, maturation and fertilization; pp. 1–37.

Miyano T., Manabe N. Oocyte growth and acquisition of meiotic competence. Soc. Reprod. Fertil. Suppl. 2007;63:531–538. PubMed

Kyogoku H., Ogushi S., Miyano T., Fulka J. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig. Mol. Reprod. Dev. 2011;78:426–435. doi: 10.1002/mrd.21320. PubMed DOI

Mangia F., Epstein C.J. Biochemical studies of growing mouse oocytes: Preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities. Dev. Biol. 1975;45:211–220. doi: 10.1016/0012-1606(75)90061-5. PubMed DOI

Ericsson S.A., Boice M.L., Funahashi H., Day B.N. Assessment of Porcine oocytes using brilliant cresyl blue. Theriogenology. 1993;39:214. doi: 10.1016/0093-691X(93)90069-H. DOI

Andersen J.S., Lyon C.E., Fox A.H., Leung A.K.L., Lam Y.W., Steen H., Mann M., Lamond A.I. Directed proteomic analysis of the human nucleolus. Curr. Biol. 2002;12:1–11. doi: 10.1016/S0960-9822(01)00650-9. PubMed DOI

Christians E., Boiani M., Garagna S., Dessy C., Redi C.A., Renard J.P., Zuccotti M. Gene expression and chromatin organization during mouse oocyte growth. Dev. Biol. 1999;207:76–85. doi: 10.1006/dbio.1998.9157. PubMed DOI

Bachant J.B., Elledge S.J. Mitotic treasures in the nucleolus. Nature. 1999;398:757–758. doi: 10.1038/19641. PubMed DOI

Combelles C.M.H., Cekleniak N.A., Racowsky C., Albertini D.F. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum. Reprod. 2002;17:1006–1016. doi: 10.1093/humrep/17.4.1006. PubMed DOI

Yuswiati E., Holtz W. Work in progress: Successful transfer of vitrified goat embryos. Theriogenology. 1990;34:629–632. doi: 10.1016/0093-691X(90)90018-O. PubMed DOI

Tachikawa S., Otoi T., Kondo S., Machida T., Kasai M. Successful vitrification of bovine blastocysts, derived by in vitro maturation and fertilization. Mol. Reprod. Dev. 1993;34:266–271. doi: 10.1002/mrd.1080340306. PubMed DOI

Kobayashi S., Takei M., Kano M., Tomita M., Leibo S.P. Piglets produced by transfer of vitrified porcine embryos after stepwise dilution of cryoprotectants. Cryobiology. 1998;36:20–31. doi: 10.1006/cryo.1997.2056. PubMed DOI

Kyogoku H., Wakayama T., Kitajima T.S., Miyano T. Single nucleolus precursor body formation in the pronucleus of mouse zygotes and SCNT embryos. PLoS ONE. 2018;13:e0202663. doi: 10.1371/journal.pone.0202663. PubMed DOI PMC

Nagashima H., Kashiwazaki N., Ashman R.J., Grupen C.G., Seamark R.F., Nottle M.B. Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol. Reprod. 1994;51:618–622. doi: 10.1095/biolreprod51.4.618. PubMed DOI

Park K.-E., Kwon I.-K., Han M.-S., Niwa K. Effects of partial removal of cytoplasmic lipid on survival of vitrified germinal vesicle stage pig oocytes. J. Reprod. Dev. 2005;51:151–160. doi: 10.1262/jrd.51.151. PubMed DOI

Moffa F., Comoglio F., Krey L.C., Grifo J.A., Revelli A., Massobrio M., Zhang J. Germinal Vesicle transfer between fresh and cryopreserved immature mouse oocytes. Hum. Reprod. 2002;17:178–183. doi: 10.1093/humrep/17.1.178. PubMed DOI

He Z., Liu H.C., Rosenwaks Z. Cryopreservation of nuclear material as a potential method of fertility preservation. Fertil. Steril. 2003;79:347–354. doi: 10.1016/S0015-0282(02)04674-5. PubMed DOI

Kren R., Fulka J., Fulka H. Cryopreservation of isolated mouse germinal vesicles. J. Reprod. Dev. 2005;51:289–292. doi: 10.1262/jrd.16071. PubMed DOI

Fulka H., Langerova A., Barnetova I., Novakova Z., Mosko T., Fulka J. How to repair the oocyte and zygote? J. Reprod. Dev. 2009;55:583–587. doi: 10.1262/jrd.09-085H. PubMed DOI

Hernandez-Verdun D. The nucleolus: A Model for the organization of nuclear functions. Histochem. Cell Biol. 2006;126:135–148. doi: 10.1007/s00418-006-0212-3. PubMed DOI

Oestrup O., Hall V., Petkov S.G., Wolf X.A., Hyldig S., Hyttel P. From zygote to implantation: Morphological and molecular dynamics during embryo development in the pig. Reprod. Domest. Anim. Zuchthyg. 2009;44(Suppl. 3):39–49. doi: 10.1111/j.1439-0531.2009.01482.x. PubMed DOI

Fulka J., Fulka H., John J.C.S. Transmission of mitochondrial DNA disorders: Possibilities for the elimination of mutated mitochondria. Cloning Stem Cells. 2007;9:47–50. doi: 10.1089/clo.2006.0066. PubMed DOI

Bredenoord A.L., Pennings G., de Wert G. Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: Conceptual and normative issues. Hum. Reprod. Update. 2008;14:669–678. doi: 10.1093/humupd/dmn035. PubMed DOI

Liu H., Wang C.W., Grifo J.A., Krey L.C., Zhang J. Reconstruction of mouse oocytes by germinal vesicle transfer: Maturity of host oocyte cytoplasm determines meiosis. Hum. Reprod. 1999;14:2357–2361. doi: 10.1093/humrep/14.9.2357. PubMed DOI

Fulka J., Mrazek M., Fulka H., Loi P. Mammalian oocyte therapies. Cloning Stem Cells. 2005;7:183–188. doi: 10.1089/clo.2005.7.183. PubMed DOI

Borsos M., Torres-Padilla M.-E. Building up the nucleus: Nuclear Organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev. 2016;30:611–621. doi: 10.1101/gad.273805.115. PubMed DOI PMC

Zuccotti M., Garagna S., Merico V., Monti M., Alberto Redi C. Chromatin organisation and nuclear architecture in growing mouse oocytes. Mol. Cell. Endocrinol. 2005;234:11–17. doi: 10.1016/j.mce.2004.08.014. PubMed DOI

Jachowicz J.W., Santenard A., Bender A., Muller J., Torres-Padilla M.-E. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 2013;27:2427. doi: 10.1101/gad.224550.113. PubMed DOI PMC

Lin C., Koh F., Wong P., Conti M., Ramalho-Santos M. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal rna transcription in the mouse zygote. Dev. Cell. 2014;30:268–279. doi: 10.1016/j.devcel.2014.06.022. PubMed DOI PMC

Martin C., Beaujean N., Brochard V., Audouard C., Zink D., Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol. 2006;292:317–332. doi: 10.1016/j.ydbio.2006.01.009. PubMed DOI

Probst A.V., Santos F., Reik W., Almouzni G., Dean W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma. 2007;116:403–415. doi: 10.1007/s00412-007-0106-8. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dynamics and necessity of SIRT1 for maternal-zygotic transition

. 2024 Sep 16 ; 14 (1) : 21598. [epub] 20240916

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace