Impact of Acid Hydrolysis on Morphology, Rheology, Mechanical Properties, and Processing of Thermoplastic Starch

. 2025 May 11 ; 17 (10) : . [epub] 20250511

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40430606

We modified native wheat starch using 15, 30, and 60 min of acid hydrolysis (AH). The non-modified and AH-modified starches were converted to highly homogeneous thermoplastic starches (TPSs) using our two-step preparation protocol consisting of solution casting and melt mixing. Our main objective was to verify if AH can decrease the processing temperature of TPS. All samples were characterized in detail by microscopic, spectroscopic, diffraction, thermomechanical, rheological, and micromechanical methods, including in situ measurements of torque and temperature during the final melt mixing step. The experimental results showed that (i) AH decreased the average molecular weight preferentially in the amorphous regions, (ii) the lower-viscosity matrix in the AH-treated starches resulted in slightly higher crystallinity, and (iii) all AH-modified TPSs with a less viscous amorphous phase and higher content of crystalline phase exhibited similar properties. The effect of the higher crystallinity predominated at a laboratory temperature and low deformations, resulting in slightly stiffer material. The effect of the lower viscosity dominated during the melt mixing, where the shorter molecules acted as a lubricant and decreased the in situ measured processing temperature. The AH-induced decrease in the processing temperature could be beneficial for energy savings and/or possible temperature-sensitive admixtures for TPS systems.

Zobrazit více v PubMed

He Z., Chi C., Huang S., Li X. A novel method for obtaining high amylose starch fractions from debranched starch. Curr. Res. Food Sci. 2023;7:100589. doi: 10.1016/j.crfs.2023.100589. PubMed DOI PMC

Rana L., Kouka S., Gajdosova V., Strachota B., Konefał M., Pokorny V., Pavlova E., Stary Z., Lukes J., Patocka M., et al. Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties. Materials. 2024;17:5474. doi: 10.3390/ma17225474. PubMed DOI PMC

Buléon A., Colona P., Planchot V., Ball S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998;23:85–112. doi: 10.1016/S0141-8130(98)00040-3. PubMed DOI

Ai Y., Jane J. Gelatinization and rheological properties of starch. Starch-Stärke. 2015;67:213–224. doi: 10.1002/star.201400201. DOI

Suortti T., Gorenstein M.V., Roger P. Determination of the molecular mass of amylose. J. Chromatogr. A. 1998;828:515–521. doi: 10.1016/S0021-9673(98)00831-0. DOI

Cui C., Ji N., Wang Y., Xiong L., Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci. Technol. 2021;116:854–869. doi: 10.1016/j.tifs.2021.08.024. DOI

Mizuno A., Mitsuiki M., Motoki M. Effect of Crystallinity on the Glass Transition Temperature of Starch. J. Agric. Food Chem. 1998;46:98–103. doi: 10.1021/jf970612b. PubMed DOI

Primo-Martín C., van Nieuwenhuijzen N.H., Hamer R.J., van Vliet T. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust. J. Cereal Sci. 2007;45:219–226. doi: 10.1016/j.jcs.2006.08.009. DOI

Temesgen S., Rennert M., Tesfaye T., Großmann L., Kuehnert I., Smolka N., Nase M. Thermal, morphological, and structural characterization of starch-based bio-polymers for melt spinnability. e-Polymers. 2024;24:20240025. doi: 10.1515/epoly-2024-0025. DOI

Ostafinska A., Fortelny I., Nevoralova M., Hodan J., Kredatusova J., Slouf M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI

Thakur R., Pristijono P., Scarlett C.J., Bowyer M., Singh S.P., Vuong Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019;132:1079–1089. doi: 10.1016/j.ijbiomac.2019.03.190. PubMed DOI

Zhang Y., Li B., Zhang Y., Xu F., Zhu K., Li S., Tan L., Wu G., Dong W. Effect of degree of polymerization of amylopectin on the gelatinization properties of jackfruit seed starch. Food Chem. 2019;289:152–159. doi: 10.1016/j.foodchem.2019.03.033. PubMed DOI

Campos A.D., Sena Neto A.R.D., Rodrigues V.B., Luchesi B.R., Moreira F.K.V., Correa A.C., Mattoso L.H.C., Marconcini J.M. Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr. Polym. 2017;175:330–336. doi: 10.1016/j.carbpol.2017.07.080. PubMed DOI

Campos-Requena V.H., Rivas B.L., Pérez M.A., Figueroa C.R., Figueroa N.E., Sanfuentes E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017;129:29–36. doi: 10.1016/j.postharvbio.2017.03.005. DOI

Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI

Huneault M.A., Li H. Preparation and properties of extruded thermoplastic starch/polymer blends. J. Appl. Polym. Sci. 2012;126:E96–E108. doi: 10.1002/app.36724. DOI

Mezger T.G. The Rheology Handbook. 4th ed. Vincentz Network; Hannover, Germany: 2014. Oscillatory tests.

Zeng F., Ma F., Kong F., Gao Q., Yu S. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 2015;172:92–98. doi: 10.1016/j.foodchem.2014.09.020. PubMed DOI

Jambrak A.R., Herceg Z., Šubarić D., Babić J., Brnčić M., Brnčić S.R., Bosiljkov T., Čvek D., Tripalo B., Gelo J. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 2010;79:91–100. doi: 10.1016/j.carbpol.2009.07.051. DOI

Kumar V., Kumarasamy V., Bhatt P., Dixit R., Kumar M., Shukla C.P., Subramaniyan V., Kumar S. Ultrasound assisted techniques for starch modification to develop novel drug delivery systems: A comprehensive study. J. Bioact. Compat. Polym. 2024;39:279–297. doi: 10.1177/08839115241249143. DOI

Yan X., Wei H., Kou L., Ren L., Zhou J. Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydr. Polym. 2021;252:117243. doi: 10.1016/j.carbpol.2020.117243. PubMed DOI

Karma V., Gupta A.D., Yadav D.K., Singh A.A., Verma M., Singh H. Recent Developments in Starch Modification by Organic Acids: A Review. Starch-Stärke. 2022;74:2200025. doi: 10.1002/star.202200025. DOI

Wang S., Copeland L. Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit. Rev. Food Sci. Nutr. 2015;55:1081–1097. doi: 10.1080/10408398.2012.684551. PubMed DOI

Beninca C., Demiate I.M., Lacerda L.G., Filho M.A.d.S.C., Ionashiro M., Schnitzler E. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 °C. Eclética Química. 2008;33:13–17. doi: 10.26850/1678-4618eqj.v33.3.2008.p13-17. DOI

Xia L., Wenyuan G., Juan W., Qianqian J., Luqi H. Comparison of the morphological, crystalline, and thermal properties of different crystalline types of starches after acid hydrolysis. Starch-Stärke. 2010;62:686–696. doi: 10.1002/star.201000080. DOI

Sanchez de la Concha B.B., Agama-Acevedo E., Nuñez-Santiago M.C., Bello-Perez L.A., Garcia H.S., Alvarez-Ramirez J. Acid hydrolysis of waxy starches with different granule size for nanocrystal production. J. Cereal Sci. 2018;79:193–200. doi: 10.1016/j.jcs.2017.10.018. DOI

Wang Y.-J., Truong V.-D., Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003;52:327–333. doi: 10.1016/S0144-8617(02)00323-5. DOI

Ulbrich M., Bai Y., Flöter E. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohydr. Polym. 2020;230:115633. doi: 10.1016/j.carbpol.2019.115633. PubMed DOI

Jiang M., Hong Y., Gu Z., Cheng L., Li Z., Li C. Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures. Int. J. Biol. Macromol. 2018;106:320–329. doi: 10.1016/j.ijbiomac.2017.08.028. PubMed DOI

Zhang H., Hou H., Liu P., Wang W., Dong H. Effects of acid hydrolysis on the physicochemical properties of pea starch and its film forming capacity. Food Hydrocoll. 2019;87:173–179. doi: 10.1016/j.foodhyd.2018.08.009. DOI

Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC

Atichokudomchai N., Shobsngob S., Varavinit S. Morphological Properties of Acid-modified Tapioca Starch. Starch-Stärke. 2000;52:283–289. doi: 10.1002/1521-379X(20009)52:8/9<283::AID-STAR283>3.0.CO;2-Q. DOI

Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI

Palacký J., Mojzeš P., Bok J. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectrosc. 2011;42:1528–1539. doi: 10.1002/jrs.2896. DOI

Wojdyr M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010;43:1126–1128. doi: 10.1107/S0021889810030499. DOI

Oliver W.C., Pharr G.M. Nanoindentation in materials research: Past, present, and future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI

Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and micromechanical properties of polymers with reduced density of entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI

Fischer-Cripps A.C. Mechanical Engineering Series. Springer; New York, NY, USA: 2004. Nanoindentation. DOI

Slouf M., Henning S. Micromechanical Properties. In: Mark H.F., editor. Encyclopedia of Polymer Science and Technology. 3rd ed. Wiley; New York, NY, USA: 2022. pp. 1–50.

Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC

Slouf M., Arevalo S., Vlkova H., Gajdosova V., Kralik V., Pruitt L. Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations. J. Mech. Behav. Biomed. Mater. 2021;120:104205. doi: 10.1016/j.jmbbm.2020.104205. PubMed DOI

Gajdošová V., Špírková M., Aguilar Costumbre Y., Krejčíková S., Strachota B., Šlouf M., Strachota A. Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(urethane-urea)/Silica Nanocomposites. Materials. 2023;16:1767. doi: 10.3390/ma16051767. PubMed DOI PMC

Hoover R. Acid-Treated Starches. Food Rev. Int. 2000;16:369–392. doi: 10.1081/FRI-100100292. DOI

Fortelný I., Jůza J. Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends. Polymers. 2019;11:761. doi: 10.3390/polym11050761. PubMed DOI PMC

Ostafinska A., Fortelný I., Hodan J., Krejčíková S., Nevoralová M., Kredatusová J., Kruliš Z., Kotek J., Šlouf M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. J. Mech. Behav. Biomed. Mater. 2017;69:229–241. doi: 10.1016/j.jmbbm.2017.01.015. PubMed DOI

Almeida M.R., Alves R.S., Nascimbem L.B.L.R., Stephani R., Poppi R.J., De Oliveira L.F.C. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem. 2010;397:2693–2701. doi: 10.1007/s00216-010-3566-2. PubMed DOI

Basiak E., Lenart A., Debeaufort F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers. 2018;10:412. doi: 10.3390/polym10040412. PubMed DOI PMC

Basilio-Cortés U.A., González-Cruz L., Velazquez G., Teniente-Martínez G., Gómez-Aldapa C.A., Castro-Rosas J., Bernardino-Nicanor A. Effect of Dual Modification on the Spectroscopic, Calorimetric, Viscosimetric and Morphological Characteristics of Corn Starch. Polymers. 2019;11:333. doi: 10.3390/polym11020333. PubMed DOI PMC

Chung H., Arnold M.A. Near-Infrared Spectroscopy for Monitoring Starch Hydrolysis. Appl. Spectrosc. 2000;54:277–283. doi: 10.1366/0003702001949212. DOI

Shi R., Liu Q., Ding T., Han Y., Zhang L., Chen D., Tian W. Ageing of soft thermoplastic starch with high glycerol content. J. Appl. Polym. Sci. 2007;103:574–586. doi: 10.1002/app.25193. DOI

Slouf M., Gajdosova V., Dybal J., Sticha R., Fulin P., Pokorny D., Mateo J., Panisello J.J., Canales V., Medel F., et al. European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo. Polymers. 2023;15:568. doi: 10.3390/polym15030568. PubMed DOI PMC

Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J. Biomed. Mater. Res. 2008;85B:240–251. doi: 10.1002/jbm.b.30942. PubMed DOI

Van Soest J.J.G., Hulleman S.H.D., De Wit D., Vliegenthart J.F.G. Crystallinity in starch bioplastics. Ind. Crops Prod. 1996;5:11–22. doi: 10.1016/0926-6690(95)00048-8. DOI

Schmitt H., Guidez A., Prashantha K., Soulestin J., Lacrampe M.F., Krawczak P. Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr. Polym. 2015;115:364–372. doi: 10.1016/j.carbpol.2014.09.004. PubMed DOI

Van Soest J.J.G., Benes K., De Wit D. The Influence of Acid Hydrolysis of Potato Starch on the Stress-Strain Propoerties of Thermoplastic Starch. Starch-Stärke. 1995;47:429–434. doi: 10.1002/star.19950471106. DOI

Angellier H., Putaux J., Molina-Boisseau S., Dupeyre D., Dufresne A. Starch Nanocrystal Fillers in an Acrylic Polymer Matrix. Macromol. Symp. 2005;221:95–104. doi: 10.1002/masy.200550310. DOI

Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI

Tabor D. The Hardness of Metals. Clarendon Press; Oxford, UK: Oxford University Press; Oxford, UK: 1951.

Struik L.C.E. Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J. Non-Cryst. Solids. 1991;131–133:395–407. doi: 10.1016/0022-3093(91)90333-2. DOI

Fulin P., Gajdosova V., Sloufova I., Hodan J., Pokorny D., Slouf M. Comparison of various UHMWPE formulations from contemporary total knee replacements before and after accelerated aging. Mater. Des. 2025;252:113795. doi: 10.1016/j.matdes.2025.113795. DOI

Slouf M., Pavlova E., Krejcikova S., Ostafinska A., Zhigunov A., Krzyzanek V., Sowinski P., Piorkowska E. Relations between morphology and micromechanical properties of alpha, beta and gamma phases of iPP. Polym. Test. 2018;67:522–532. doi: 10.1016/j.polymertesting.2018.03.039. DOI

Slouf M., Steinhart M., Nemecek P., Gajdosova V., Hodan J. Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers. Materials. 2023;16:834. doi: 10.3390/ma16020834. PubMed DOI PMC

Flores A., Ania F., Baltá-Calleja F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI

Zhu Y., Guo F., Li J., Wang Z., Liang Z., Yi C. Development of a Novel Energy Saving and Environmentally Friendly Starch via a Graft Copolymerization Strategy for Efficient Warp Sizing and Easy Removal. Polymers. 2024;16:182. doi: 10.3390/polym16020182. PubMed DOI PMC

Jain S., Goossens J.G.P., Peters G.W.M., Van Duin M., Lemstra P.J. Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter. 2008;4:1848. doi: 10.1039/b802905a. DOI

Zuo Y., Gu J., Tan H., Qiao Z., Xie Y., Zhang Y. The characterization of granule structural changes in acid-thinning starches by new methods and its effect on other properties. J. Adhes. Sci. Technol. 2014;28:479–489. doi: 10.1080/01694243.2013.843283. DOI

Pozo C., Rodríguez-Llamazares S., Bouza R., Barral L., Castaño J., Müller N., Restrepo I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018;25:266. doi: 10.1007/s10965-018-1651-y. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...