Impact of Acid Hydrolysis on Morphology, Rheology, Mechanical Properties, and Processing of Thermoplastic Starch
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40430606
PubMed Central
PMC12115267
DOI
10.3390/polym17101310
PII: polym17101310
Knihovny.cz E-zdroje
- Klíčová slova
- low viscosity, melt mixing, processing temperature, thermoplastic starch,
- Publikační typ
- časopisecké články MeSH
We modified native wheat starch using 15, 30, and 60 min of acid hydrolysis (AH). The non-modified and AH-modified starches were converted to highly homogeneous thermoplastic starches (TPSs) using our two-step preparation protocol consisting of solution casting and melt mixing. Our main objective was to verify if AH can decrease the processing temperature of TPS. All samples were characterized in detail by microscopic, spectroscopic, diffraction, thermomechanical, rheological, and micromechanical methods, including in situ measurements of torque and temperature during the final melt mixing step. The experimental results showed that (i) AH decreased the average molecular weight preferentially in the amorphous regions, (ii) the lower-viscosity matrix in the AH-treated starches resulted in slightly higher crystallinity, and (iii) all AH-modified TPSs with a less viscous amorphous phase and higher content of crystalline phase exhibited similar properties. The effect of the higher crystallinity predominated at a laboratory temperature and low deformations, resulting in slightly stiffer material. The effect of the lower viscosity dominated during the melt mixing, where the shorter molecules acted as a lubricant and decreased the in situ measured processing temperature. The AH-induced decrease in the processing temperature could be beneficial for energy savings and/or possible temperature-sensitive admixtures for TPS systems.
Zobrazit více v PubMed
He Z., Chi C., Huang S., Li X. A novel method for obtaining high amylose starch fractions from debranched starch. Curr. Res. Food Sci. 2023;7:100589. doi: 10.1016/j.crfs.2023.100589. PubMed DOI PMC
Rana L., Kouka S., Gajdosova V., Strachota B., Konefał M., Pokorny V., Pavlova E., Stary Z., Lukes J., Patocka M., et al. Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties. Materials. 2024;17:5474. doi: 10.3390/ma17225474. PubMed DOI PMC
Buléon A., Colona P., Planchot V., Ball S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998;23:85–112. doi: 10.1016/S0141-8130(98)00040-3. PubMed DOI
Ai Y., Jane J. Gelatinization and rheological properties of starch. Starch-Stärke. 2015;67:213–224. doi: 10.1002/star.201400201. DOI
Suortti T., Gorenstein M.V., Roger P. Determination of the molecular mass of amylose. J. Chromatogr. A. 1998;828:515–521. doi: 10.1016/S0021-9673(98)00831-0. DOI
Cui C., Ji N., Wang Y., Xiong L., Sun Q. Bioactive and intelligent starch-based films: A review. Trends Food Sci. Technol. 2021;116:854–869. doi: 10.1016/j.tifs.2021.08.024. DOI
Mizuno A., Mitsuiki M., Motoki M. Effect of Crystallinity on the Glass Transition Temperature of Starch. J. Agric. Food Chem. 1998;46:98–103. doi: 10.1021/jf970612b. PubMed DOI
Primo-Martín C., van Nieuwenhuijzen N.H., Hamer R.J., van Vliet T. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust. J. Cereal Sci. 2007;45:219–226. doi: 10.1016/j.jcs.2006.08.009. DOI
Temesgen S., Rennert M., Tesfaye T., Großmann L., Kuehnert I., Smolka N., Nase M. Thermal, morphological, and structural characterization of starch-based bio-polymers for melt spinnability. e-Polymers. 2024;24:20240025. doi: 10.1515/epoly-2024-0025. DOI
Ostafinska A., Fortelny I., Nevoralova M., Hodan J., Kredatusova J., Slouf M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI
Thakur R., Pristijono P., Scarlett C.J., Bowyer M., Singh S.P., Vuong Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019;132:1079–1089. doi: 10.1016/j.ijbiomac.2019.03.190. PubMed DOI
Zhang Y., Li B., Zhang Y., Xu F., Zhu K., Li S., Tan L., Wu G., Dong W. Effect of degree of polymerization of amylopectin on the gelatinization properties of jackfruit seed starch. Food Chem. 2019;289:152–159. doi: 10.1016/j.foodchem.2019.03.033. PubMed DOI
Campos A.D., Sena Neto A.R.D., Rodrigues V.B., Luchesi B.R., Moreira F.K.V., Correa A.C., Mattoso L.H.C., Marconcini J.M. Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr. Polym. 2017;175:330–336. doi: 10.1016/j.carbpol.2017.07.080. PubMed DOI
Campos-Requena V.H., Rivas B.L., Pérez M.A., Figueroa C.R., Figueroa N.E., Sanfuentes E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017;129:29–36. doi: 10.1016/j.postharvbio.2017.03.005. DOI
Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI
Huneault M.A., Li H. Preparation and properties of extruded thermoplastic starch/polymer blends. J. Appl. Polym. Sci. 2012;126:E96–E108. doi: 10.1002/app.36724. DOI
Mezger T.G. The Rheology Handbook. 4th ed. Vincentz Network; Hannover, Germany: 2014. Oscillatory tests.
Zeng F., Ma F., Kong F., Gao Q., Yu S. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 2015;172:92–98. doi: 10.1016/j.foodchem.2014.09.020. PubMed DOI
Jambrak A.R., Herceg Z., Šubarić D., Babić J., Brnčić M., Brnčić S.R., Bosiljkov T., Čvek D., Tripalo B., Gelo J. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 2010;79:91–100. doi: 10.1016/j.carbpol.2009.07.051. DOI
Kumar V., Kumarasamy V., Bhatt P., Dixit R., Kumar M., Shukla C.P., Subramaniyan V., Kumar S. Ultrasound assisted techniques for starch modification to develop novel drug delivery systems: A comprehensive study. J. Bioact. Compat. Polym. 2024;39:279–297. doi: 10.1177/08839115241249143. DOI
Yan X., Wei H., Kou L., Ren L., Zhou J. Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydr. Polym. 2021;252:117243. doi: 10.1016/j.carbpol.2020.117243. PubMed DOI
Karma V., Gupta A.D., Yadav D.K., Singh A.A., Verma M., Singh H. Recent Developments in Starch Modification by Organic Acids: A Review. Starch-Stärke. 2022;74:2200025. doi: 10.1002/star.202200025. DOI
Wang S., Copeland L. Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit. Rev. Food Sci. Nutr. 2015;55:1081–1097. doi: 10.1080/10408398.2012.684551. PubMed DOI
Beninca C., Demiate I.M., Lacerda L.G., Filho M.A.d.S.C., Ionashiro M., Schnitzler E. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 °C. Eclética Química. 2008;33:13–17. doi: 10.26850/1678-4618eqj.v33.3.2008.p13-17. DOI
Xia L., Wenyuan G., Juan W., Qianqian J., Luqi H. Comparison of the morphological, crystalline, and thermal properties of different crystalline types of starches after acid hydrolysis. Starch-Stärke. 2010;62:686–696. doi: 10.1002/star.201000080. DOI
Sanchez de la Concha B.B., Agama-Acevedo E., Nuñez-Santiago M.C., Bello-Perez L.A., Garcia H.S., Alvarez-Ramirez J. Acid hydrolysis of waxy starches with different granule size for nanocrystal production. J. Cereal Sci. 2018;79:193–200. doi: 10.1016/j.jcs.2017.10.018. DOI
Wang Y.-J., Truong V.-D., Wang L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003;52:327–333. doi: 10.1016/S0144-8617(02)00323-5. DOI
Ulbrich M., Bai Y., Flöter E. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohydr. Polym. 2020;230:115633. doi: 10.1016/j.carbpol.2019.115633. PubMed DOI
Jiang M., Hong Y., Gu Z., Cheng L., Li Z., Li C. Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures. Int. J. Biol. Macromol. 2018;106:320–329. doi: 10.1016/j.ijbiomac.2017.08.028. PubMed DOI
Zhang H., Hou H., Liu P., Wang W., Dong H. Effects of acid hydrolysis on the physicochemical properties of pea starch and its film forming capacity. Food Hydrocoll. 2019;87:173–179. doi: 10.1016/j.foodhyd.2018.08.009. DOI
Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC
Atichokudomchai N., Shobsngob S., Varavinit S. Morphological Properties of Acid-modified Tapioca Starch. Starch-Stärke. 2000;52:283–289. doi: 10.1002/1521-379X(20009)52:8/9<283::AID-STAR283>3.0.CO;2-Q. DOI
Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI
Palacký J., Mojzeš P., Bok J. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectrosc. 2011;42:1528–1539. doi: 10.1002/jrs.2896. DOI
Wojdyr M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010;43:1126–1128. doi: 10.1107/S0021889810030499. DOI
Oliver W.C., Pharr G.M. Nanoindentation in materials research: Past, present, and future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI
Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and micromechanical properties of polymers with reduced density of entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI
Fischer-Cripps A.C. Mechanical Engineering Series. Springer; New York, NY, USA: 2004. Nanoindentation. DOI
Slouf M., Henning S. Micromechanical Properties. In: Mark H.F., editor. Encyclopedia of Polymer Science and Technology. 3rd ed. Wiley; New York, NY, USA: 2022. pp. 1–50.
Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC
Slouf M., Arevalo S., Vlkova H., Gajdosova V., Kralik V., Pruitt L. Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations. J. Mech. Behav. Biomed. Mater. 2021;120:104205. doi: 10.1016/j.jmbbm.2020.104205. PubMed DOI
Gajdošová V., Špírková M., Aguilar Costumbre Y., Krejčíková S., Strachota B., Šlouf M., Strachota A. Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(urethane-urea)/Silica Nanocomposites. Materials. 2023;16:1767. doi: 10.3390/ma16051767. PubMed DOI PMC
Hoover R. Acid-Treated Starches. Food Rev. Int. 2000;16:369–392. doi: 10.1081/FRI-100100292. DOI
Fortelný I., Jůza J. Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends. Polymers. 2019;11:761. doi: 10.3390/polym11050761. PubMed DOI PMC
Ostafinska A., Fortelný I., Hodan J., Krejčíková S., Nevoralová M., Kredatusová J., Kruliš Z., Kotek J., Šlouf M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. J. Mech. Behav. Biomed. Mater. 2017;69:229–241. doi: 10.1016/j.jmbbm.2017.01.015. PubMed DOI
Almeida M.R., Alves R.S., Nascimbem L.B.L.R., Stephani R., Poppi R.J., De Oliveira L.F.C. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem. 2010;397:2693–2701. doi: 10.1007/s00216-010-3566-2. PubMed DOI
Basiak E., Lenart A., Debeaufort F. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers. 2018;10:412. doi: 10.3390/polym10040412. PubMed DOI PMC
Basilio-Cortés U.A., González-Cruz L., Velazquez G., Teniente-Martínez G., Gómez-Aldapa C.A., Castro-Rosas J., Bernardino-Nicanor A. Effect of Dual Modification on the Spectroscopic, Calorimetric, Viscosimetric and Morphological Characteristics of Corn Starch. Polymers. 2019;11:333. doi: 10.3390/polym11020333. PubMed DOI PMC
Chung H., Arnold M.A. Near-Infrared Spectroscopy for Monitoring Starch Hydrolysis. Appl. Spectrosc. 2000;54:277–283. doi: 10.1366/0003702001949212. DOI
Shi R., Liu Q., Ding T., Han Y., Zhang L., Chen D., Tian W. Ageing of soft thermoplastic starch with high glycerol content. J. Appl. Polym. Sci. 2007;103:574–586. doi: 10.1002/app.25193. DOI
Slouf M., Gajdosova V., Dybal J., Sticha R., Fulin P., Pokorny D., Mateo J., Panisello J.J., Canales V., Medel F., et al. European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo. Polymers. 2023;15:568. doi: 10.3390/polym15030568. PubMed DOI PMC
Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J. Biomed. Mater. Res. 2008;85B:240–251. doi: 10.1002/jbm.b.30942. PubMed DOI
Van Soest J.J.G., Hulleman S.H.D., De Wit D., Vliegenthart J.F.G. Crystallinity in starch bioplastics. Ind. Crops Prod. 1996;5:11–22. doi: 10.1016/0926-6690(95)00048-8. DOI
Schmitt H., Guidez A., Prashantha K., Soulestin J., Lacrampe M.F., Krawczak P. Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr. Polym. 2015;115:364–372. doi: 10.1016/j.carbpol.2014.09.004. PubMed DOI
Van Soest J.J.G., Benes K., De Wit D. The Influence of Acid Hydrolysis of Potato Starch on the Stress-Strain Propoerties of Thermoplastic Starch. Starch-Stärke. 1995;47:429–434. doi: 10.1002/star.19950471106. DOI
Angellier H., Putaux J., Molina-Boisseau S., Dupeyre D., Dufresne A. Starch Nanocrystal Fillers in an Acrylic Polymer Matrix. Macromol. Symp. 2005;221:95–104. doi: 10.1002/masy.200550310. DOI
Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI
Tabor D. The Hardness of Metals. Clarendon Press; Oxford, UK: Oxford University Press; Oxford, UK: 1951.
Struik L.C.E. Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J. Non-Cryst. Solids. 1991;131–133:395–407. doi: 10.1016/0022-3093(91)90333-2. DOI
Fulin P., Gajdosova V., Sloufova I., Hodan J., Pokorny D., Slouf M. Comparison of various UHMWPE formulations from contemporary total knee replacements before and after accelerated aging. Mater. Des. 2025;252:113795. doi: 10.1016/j.matdes.2025.113795. DOI
Slouf M., Pavlova E., Krejcikova S., Ostafinska A., Zhigunov A., Krzyzanek V., Sowinski P., Piorkowska E. Relations between morphology and micromechanical properties of alpha, beta and gamma phases of iPP. Polym. Test. 2018;67:522–532. doi: 10.1016/j.polymertesting.2018.03.039. DOI
Slouf M., Steinhart M., Nemecek P., Gajdosova V., Hodan J. Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers. Materials. 2023;16:834. doi: 10.3390/ma16020834. PubMed DOI PMC
Flores A., Ania F., Baltá-Calleja F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI
Zhu Y., Guo F., Li J., Wang Z., Liang Z., Yi C. Development of a Novel Energy Saving and Environmentally Friendly Starch via a Graft Copolymerization Strategy for Efficient Warp Sizing and Easy Removal. Polymers. 2024;16:182. doi: 10.3390/polym16020182. PubMed DOI PMC
Jain S., Goossens J.G.P., Peters G.W.M., Van Duin M., Lemstra P.J. Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter. 2008;4:1848. doi: 10.1039/b802905a. DOI
Zuo Y., Gu J., Tan H., Qiao Z., Xie Y., Zhang Y. The characterization of granule structural changes in acid-thinning starches by new methods and its effect on other properties. J. Adhes. Sci. Technol. 2014;28:479–489. doi: 10.1080/01694243.2013.843283. DOI
Pozo C., Rodríguez-Llamazares S., Bouza R., Barral L., Castaño J., Müller N., Restrepo I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018;25:266. doi: 10.1007/s10965-018-1651-y. DOI