Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(urethane-urea)/Silica Nanocomposites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-06-00084
Czech Health Research Council
ASRT-22-01
Czech Academy of Sciences
PubMed
36902884
PubMed Central
PMC10004705
DOI
10.3390/ma16051767
PII: ma16051767
Knihovny.cz E-zdroje
- Klíčová slova
- aqueous polyurethane dispersion, mechanical properties, microindentation, nanocomposites, polyurethanes, silica,
- Publikační typ
- časopisecké články MeSH
Morphology, macro-, and micromechanical properties of novel poly(urethane-urea)/silica nanocomposites were analyzed by electron microscopy, dynamic mechanical thermal analysis, and microindentation. The studied nanocomposites were based on a poly(urethane-urea) (PUU) matrix filled by nanosilica, and were prepared from waterborne dispersions of PUU (latex) and SiO2. The loading of nano-SiO2 was varied between 0 (neat matrix) and 40 wt% in the dry nanocomposite. The prepared materials were all formally in the rubbery state at room temperature, but they displayed complex elastoviscoplastic behavior, spanning from stiffer elastomeric type to semi-glassy. Because of the employed rigid and highly uniform spherical nanofiller, the materials are of great interest for model microindentation studies. Additionally, because of the polycarbonate-type elastic chains of the PUU matrix, hydrogen bonding in the studied nanocomposites was expected to be rich and diverse, ranging from very strong to weak. In micro- and macromechanical tests, all the elasticity-related properties correlated very strongly. The relations among the properties that related to energy dissipation were complex, and were highly affected by the existence of hydrogen bonding of broadly varied strength, by the distribution patterns of the fine nanofiller, as well as by the eventual locally endured larger deformations during the tests, and the tendency of the materials to cold flow.
Zobrazit více v PubMed
Spirkova M., Pavlicevic J., Costumbre Y.A., Hodan J., Krejcikova S., Brozova L. Novel waterborne poly(urethane-urea)/silica nanocomposites. Polym. Compos. 2020;41:4031–4042. doi: 10.1002/pc.25690. DOI
Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC
Slouf M., Arevalo S., Vlkova H., Gajdosova V., Kralik V., Pruitt L. Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations. J. Mech. Behav. Biomed. Mater. 2021;120:104205. doi: 10.1016/j.jmbbm.2020.104205. PubMed DOI
Sonnenschein M.F. Polyurethanes: Science, Technology, Markets and Trends. 1st ed. John Wiley & Sons; New York, NY, USA: 2015.
Szycher M. Szycher’s Handbook of Polyurethanes. 1st ed. CRC Press; Boca Raton, FL, USA: 1999.
Cao X., Lee L.J., Widya T., Macosko C. Polyurethane/clay nanocomposites foams: Processing, structure and properties. Polymer. 2005;46:775–783. doi: 10.1016/j.polymer.2004.11.028. DOI
Kidane G., Burriesci G., Edirisinghe M., Ghanbari H., Bonhoeffer P., Seifalian A.M. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 2009;5:2409–2417. doi: 10.1016/j.actbio.2009.02.025. PubMed DOI
Cao X.D., Dong H., Li C.M. New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules. 2007;8:899–904. doi: 10.1021/bm0610368. PubMed DOI
Charpentier A., Burgess K., Wang L., Chowdhury R.R., Lotus A.F., Moula G. Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology. 2012;23:425606. doi: 10.1088/0957-4484/23/42/425606. PubMed DOI
Das B., Mandal M., Upadhyay A., Chattopadhyay P., Karak N. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: Smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 2013;8:035003. doi: 10.1088/1748-6041/8/3/035003. PubMed DOI
Bistricic L., Baranovic G., Leskovac M., Bajsic E.G. Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane–silica nanocomposites. Eur. Polym. J. 2010;46:1975–1987. doi: 10.1016/j.eurpolymj.2010.08.001. DOI
Yu J.C., Tonpheng B., Grobner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI
Sun G., Li Z., Liang R., Weng L.T., Zhang L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters < 5 nm. Nat. Commun. 2016;7:12095. doi: 10.1038/ncomms12095. PubMed DOI PMC
Hakimelahi H.R., Hu L., Rupp B.B., Coleman M.R. Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer. 2010;51:2494–2502. doi: 10.1016/j.polymer.2010.04.023. DOI
Rao Y.Q., Chen S. Molecular Composites Comprising TiO2 and Their Optical Properties. Macromolecules. 2008;41:4838–4844. doi: 10.1021/ma800371v. DOI
Miniewicz AGirones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI
Zhou W., Yu Y., Chen H., DiSalvo F.J., Abruna H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI
Matteucci S., Van Wagner E., Freeman B.D., Swinnea S., Sakaguchi T., Masuda T. Desilylation of Substituted Polyacetylenes by Nanoparticles. Macromolecules. 2007;40:3337–3347. doi: 10.1021/ma062421s. DOI
Strachota A., Ribot F., Matějka L., Whelan P., Starovoytova L., Plestil J., Steinhart M., Slouf M., Hromadkova J., Kovarova J., et al. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds. Macromolecules. 2012;45:221–237. doi: 10.1021/ma201178j. DOI
Strachota A., Rodzen K., Ribot F., Perchacz M., Trchová M., Steinhart M., Starovoytova L., Slouf M., Strachota B. Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer. 2014;55:3498–3515. doi: 10.1016/j.polymer.2014.06.002. DOI
Strachota A., Rodzeń K., Ribot F., Trchová M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI
Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI
Robbes A.S., Jestin J., Meneau F., Dalmas F., Sandre O., Perez J., Boue F., Cousin F. Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles’ Size. Macromolecules. 2010;43:5785–5796. doi: 10.1021/ma100713h. DOI
Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI
Maji P.K., Das N.K., Bhowmick A.K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI
Yan N., Buonocore G., Lavorgna M., Kaciulis S., Balijepalli S.K., Zhan Y.H., Xia H.S., Ambrosio L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014;102:74–81. doi: 10.1016/j.compscitech.2014.07.021. DOI
Kim B.K. Aqueous polyurethane dispersions. Colloid Polym. Sci. 1996;274:599–611. doi: 10.1007/BF00653056. DOI
Nanda A.K., Wicks D.A., Madbouly S.A., Otaigbe J.U. Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. J. Appl. Polym. Sci. 2005;98:2514–2520. doi: 10.1002/app.22141. DOI
Jeon H.T., Jang M.K., Kim B.K., Kim K.H. Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloids Surf. A Physicochem. Eng. Asp. 2007;302:559–567. doi: 10.1016/j.colsurfa.2007.03.043. DOI
Heck C.A., dos Santos J.H.Z., Wolf C.R. Waterborne polyurethane: The effect of the addition or in situ formation of silica on mechanical properties and adhesion. Int. J. Adhes. Adhes. 2015;58:13–20. doi: 10.1016/j.ijadhadh.2014.12.006. DOI
Echarri-Giacchi M., Martín-Martínez J.M. Efficient Physical Mixing of Small Amounts of Nanosilica Dispersion and Waterborne Polyurethane by Using Mild Stirring Conditions. Polymers. 2022;14:5136. doi: 10.3390/polym14235136. PubMed DOI PMC
Serkis M., Špírková M., Hodan J., Kredatusová J. Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Prog. Org. Coat. 2016;101:342–349. doi: 10.1016/j.porgcoat.2016.07.021. DOI
Zhang S., Chen Z., Guo M., Bai H., Liu X. Synthesis and characterization of waterborne UV-curable polyurethane modified with side-chain triethoxysilane and colloidal silica. Colloids Surf. A Physicochem. Eng. Asp. 2015;468:1–9. doi: 10.1016/j.colsurfa.2014.12.004. DOI
Peruzzo P.J., Anbinder P.S., Pardini F.M., Pardini O.R., Plivelic T.S., Amalvy J.I. On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties. Mater. Today Commun. 2016;6:81–91. doi: 10.1016/j.mtcomm.2016.01.002. DOI
Hassanajili S., Sajedi M.T. Fumed silica/polyurethane nanocomposites: Effect of silica concentration and its surface modification on rheology and mechanical properties. Iran. Polym. J. 2016;25:697–710. doi: 10.1007/s13726-016-0458-0. DOI
Foldi V.S., Campbell T.W. Preparation of copoly(carbonate/urethanes) from polycarbonates. J. Polym. Sci. 1962;56:1–9. doi: 10.1002/pol.1962.1205616301. DOI
Tanzi M.C., Mantovani D., Petrini P., Guidoin R., Laroche G. Chemical stability of polyether urethanes versus polycarbonate urethanes. J. Biomed. Mater. Res. 1997;36:550–559. doi: 10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E. PubMed DOI
Lee D.K., Tsai H.B., Wang H.H., Tsai R.S. Aqueous Polyurethane Dispersions Derived from Polycarbonatediols. J. Appl. Polym. Sci. 2004;94:1723–1729. doi: 10.1002/app.21090. DOI
Lee D.K., Yang Z.D., Tsai H.B., Tsai R.S. Polyurethane Dispersions Derived From Polycarbonatediols and m-Di(2-isocyanatopropyl)benzene. Polym. Eng. Sci. 2009;49:2264–2268. doi: 10.1002/pen.21477. DOI
Serkis M., Poręba R., Hodan J., Kredatusová J., Špírková M. Preparation and characterization of thermoplastic water-borne polycarbonate-based polyurethane dispersions and cast films. J. Appl. Polym. Sci. 2015;132:42672. doi: 10.1002/app.42672. DOI
Špírková M., Hodan J., Kredatusová J., Poręba R., Uchman M., Serkis-Rodzeń M. Functional properties of films based on novel waterborne polyurethane dispersions prepared without a chain-extension step. Prog. Org. Coat. 2018;123:53–62. doi: 10.1016/j.porgcoat.2018.06.014. DOI
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Flores A., Ania F., Baltá-Calleja F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI
Díez-Pascual A.M., Gómez-Fatou M.A., Ania F., Flores A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 2015;67:1–94. doi: 10.1016/j.pmatsci.2014.06.002. DOI
Mezger T.G. The Rheology Handbook for Users of Rotational and Oscillatory Rheometers. 4th ed. Vincentz Network; Hanover, Germany: 2014.
Slouf M., Henning S. Encyclopedia of Polymer Science and Technology. 4th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2022. Micromechanical Properties; pp. 1–50. DOI
Herrmann K. Hardness Testing: Principles and Applications. 1st ed. ASM International; Russell Township, OH, USA: 2011.
Heinrich G., Kluppel M., Vilgis T.A. Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 2002;6:195–203. doi: 10.1016/S1359-0286(02)00030-X. DOI
Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC
Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI
Hardiman M., Vaughan T.J., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 2016;52:157–166. doi: 10.1016/j.polymertesting.2016.04.003. DOI
Liu C.K., Lee S., Sung L.P., Nguyen T. Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 2006;100:033503. doi: 10.1063/1.2220649. DOI
Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and micromechanical properties of polymers with reduced density of entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI
Urdan T.C. Statistics in Plain English. 4th ed. Routledge (Taylor & Francis Group); New York, NY, USA: 2017.
Kang S.K., Kim J.Y., Park C.P., Kim H.U., Kwon D. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. J. Mater. Res. 2010;25:337–343. doi: 10.1557/JMR.2010.0045. DOI
Strachota A., Kroutilová I., Kovářová J., Matějka L. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Thermomechanical Properties. Macromolecules. 2004;37:9457–9464. doi: 10.1021/ma048448y. DOI
Strachota B., Hodan J., Dybal J., Matějka L. Self-Healing Epoxy and Reversible Diels-Alder Based Interpenetrating Networks. Macromol. Mater. Eng. 2021;306:2000474. doi: 10.1002/mame.202000474. DOI
Špírková M., Pavličević J., Strachota A., Poreba R., Bera O., Kaprálková L., Baldrian J., Šlouf M., Lazić N., Budinsky-Simendic J. Novel polycarbonate-based polyurethane elastomers: Composition-property relationship. Eur. Polym. J. 2011;47:959–972. doi: 10.1016/j.eurpolymj.2011.01.001. DOI
Horodecka S., Strachota A., Mossety-Leszczak B., Kisiel M., Strachota B., Šlouf M. Low-Temperature-Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinker: A Passive Smart Material with Potential as Viscoelastic Coupling. Part II—Viscoelastic and Rheological Properties. Polymers. 2020;12:2840. doi: 10.3390/polym12122840. PubMed DOI PMC