Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(urethane-urea)/Silica Nanocomposites

. 2023 Feb 21 ; 16 (5) : . [epub] 20230221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36902884

Grantová podpora
NU21-06-00084 Czech Health Research Council
ASRT-22-01 Czech Academy of Sciences

Morphology, macro-, and micromechanical properties of novel poly(urethane-urea)/silica nanocomposites were analyzed by electron microscopy, dynamic mechanical thermal analysis, and microindentation. The studied nanocomposites were based on a poly(urethane-urea) (PUU) matrix filled by nanosilica, and were prepared from waterborne dispersions of PUU (latex) and SiO2. The loading of nano-SiO2 was varied between 0 (neat matrix) and 40 wt% in the dry nanocomposite. The prepared materials were all formally in the rubbery state at room temperature, but they displayed complex elastoviscoplastic behavior, spanning from stiffer elastomeric type to semi-glassy. Because of the employed rigid and highly uniform spherical nanofiller, the materials are of great interest for model microindentation studies. Additionally, because of the polycarbonate-type elastic chains of the PUU matrix, hydrogen bonding in the studied nanocomposites was expected to be rich and diverse, ranging from very strong to weak. In micro- and macromechanical tests, all the elasticity-related properties correlated very strongly. The relations among the properties that related to energy dissipation were complex, and were highly affected by the existence of hydrogen bonding of broadly varied strength, by the distribution patterns of the fine nanofiller, as well as by the eventual locally endured larger deformations during the tests, and the tendency of the materials to cold flow.

Zobrazit více v PubMed

Spirkova M., Pavlicevic J., Costumbre Y.A., Hodan J., Krejcikova S., Brozova L. Novel waterborne poly(urethane-urea)/silica nanocomposites. Polym. Compos. 2020;41:4031–4042. doi: 10.1002/pc.25690. DOI

Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, micro- and nanomechanical characterization of crosslinked polymers with very broad range of mechanical properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC

Slouf M., Arevalo S., Vlkova H., Gajdosova V., Kralik V., Pruitt L. Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations. J. Mech. Behav. Biomed. Mater. 2021;120:104205. doi: 10.1016/j.jmbbm.2020.104205. PubMed DOI

Sonnenschein M.F. Polyurethanes: Science, Technology, Markets and Trends. 1st ed. John Wiley & Sons; New York, NY, USA: 2015.

Szycher M. Szycher’s Handbook of Polyurethanes. 1st ed. CRC Press; Boca Raton, FL, USA: 1999.

Cao X., Lee L.J., Widya T., Macosko C. Polyurethane/clay nanocomposites foams: Processing, structure and properties. Polymer. 2005;46:775–783. doi: 10.1016/j.polymer.2004.11.028. DOI

Kidane G., Burriesci G., Edirisinghe M., Ghanbari H., Bonhoeffer P., Seifalian A.M. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 2009;5:2409–2417. doi: 10.1016/j.actbio.2009.02.025. PubMed DOI

Cao X.D., Dong H., Li C.M. New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules. 2007;8:899–904. doi: 10.1021/bm0610368. PubMed DOI

Charpentier A., Burgess K., Wang L., Chowdhury R.R., Lotus A.F., Moula G. Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology. 2012;23:425606. doi: 10.1088/0957-4484/23/42/425606. PubMed DOI

Das B., Mandal M., Upadhyay A., Chattopadhyay P., Karak N. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: Smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 2013;8:035003. doi: 10.1088/1748-6041/8/3/035003. PubMed DOI

Bistricic L., Baranovic G., Leskovac M., Bajsic E.G. Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane–silica nanocomposites. Eur. Polym. J. 2010;46:1975–1987. doi: 10.1016/j.eurpolymj.2010.08.001. DOI

Yu J.C., Tonpheng B., Grobner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI

Sun G., Li Z., Liang R., Weng L.T., Zhang L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters < 5 nm. Nat. Commun. 2016;7:12095. doi: 10.1038/ncomms12095. PubMed DOI PMC

Hakimelahi H.R., Hu L., Rupp B.B., Coleman M.R. Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer. 2010;51:2494–2502. doi: 10.1016/j.polymer.2010.04.023. DOI

Rao Y.Q., Chen S. Molecular Composites Comprising TiO2 and Their Optical Properties. Macromolecules. 2008;41:4838–4844. doi: 10.1021/ma800371v. DOI

Miniewicz AGirones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI

Zhou W., Yu Y., Chen H., DiSalvo F.J., Abruna H.D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI

Matteucci S., Van Wagner E., Freeman B.D., Swinnea S., Sakaguchi T., Masuda T. Desilylation of Substituted Polyacetylenes by Nanoparticles. Macromolecules. 2007;40:3337–3347. doi: 10.1021/ma062421s. DOI

Strachota A., Ribot F., Matějka L., Whelan P., Starovoytova L., Plestil J., Steinhart M., Slouf M., Hromadkova J., Kovarova J., et al. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds. Macromolecules. 2012;45:221–237. doi: 10.1021/ma201178j. DOI

Strachota A., Rodzen K., Ribot F., Perchacz M., Trchová M., Steinhart M., Starovoytova L., Slouf M., Strachota B. Tin-based “super-POSS” building blocks in epoxy nanocomposites with highly improved oxidation resistance. Polymer. 2014;55:3498–3515. doi: 10.1016/j.polymer.2014.06.002. DOI

Strachota A., Rodzeń K., Ribot F., Trchová M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI

Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010;43:6515–6530. doi: 10.1021/ma100572e. DOI

Robbes A.S., Jestin J., Meneau F., Dalmas F., Sandre O., Perez J., Boue F., Cousin F. Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles’ Size. Macromolecules. 2010;43:5785–5796. doi: 10.1021/ma100713h. DOI

Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI

Maji P.K., Das N.K., Bhowmick A.K. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI

Yan N., Buonocore G., Lavorgna M., Kaciulis S., Balijepalli S.K., Zhan Y.H., Xia H.S., Ambrosio L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014;102:74–81. doi: 10.1016/j.compscitech.2014.07.021. DOI

Kim B.K. Aqueous polyurethane dispersions. Colloid Polym. Sci. 1996;274:599–611. doi: 10.1007/BF00653056. DOI

Nanda A.K., Wicks D.A., Madbouly S.A., Otaigbe J.U. Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. J. Appl. Polym. Sci. 2005;98:2514–2520. doi: 10.1002/app.22141. DOI

Jeon H.T., Jang M.K., Kim B.K., Kim K.H. Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloids Surf. A Physicochem. Eng. Asp. 2007;302:559–567. doi: 10.1016/j.colsurfa.2007.03.043. DOI

Heck C.A., dos Santos J.H.Z., Wolf C.R. Waterborne polyurethane: The effect of the addition or in situ formation of silica on mechanical properties and adhesion. Int. J. Adhes. Adhes. 2015;58:13–20. doi: 10.1016/j.ijadhadh.2014.12.006. DOI

Echarri-Giacchi M., Martín-Martínez J.M. Efficient Physical Mixing of Small Amounts of Nanosilica Dispersion and Waterborne Polyurethane by Using Mild Stirring Conditions. Polymers. 2022;14:5136. doi: 10.3390/polym14235136. PubMed DOI PMC

Serkis M., Špírková M., Hodan J., Kredatusová J. Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Prog. Org. Coat. 2016;101:342–349. doi: 10.1016/j.porgcoat.2016.07.021. DOI

Zhang S., Chen Z., Guo M., Bai H., Liu X. Synthesis and characterization of waterborne UV-curable polyurethane modified with side-chain triethoxysilane and colloidal silica. Colloids Surf. A Physicochem. Eng. Asp. 2015;468:1–9. doi: 10.1016/j.colsurfa.2014.12.004. DOI

Peruzzo P.J., Anbinder P.S., Pardini F.M., Pardini O.R., Plivelic T.S., Amalvy J.I. On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties. Mater. Today Commun. 2016;6:81–91. doi: 10.1016/j.mtcomm.2016.01.002. DOI

Hassanajili S., Sajedi M.T. Fumed silica/polyurethane nanocomposites: Effect of silica concentration and its surface modification on rheology and mechanical properties. Iran. Polym. J. 2016;25:697–710. doi: 10.1007/s13726-016-0458-0. DOI

Foldi V.S., Campbell T.W. Preparation of copoly(carbonate/urethanes) from polycarbonates. J. Polym. Sci. 1962;56:1–9. doi: 10.1002/pol.1962.1205616301. DOI

Tanzi M.C., Mantovani D., Petrini P., Guidoin R., Laroche G. Chemical stability of polyether urethanes versus polycarbonate urethanes. J. Biomed. Mater. Res. 1997;36:550–559. doi: 10.1002/(SICI)1097-4636(19970915)36:4<550::AID-JBM14>3.0.CO;2-E. PubMed DOI

Lee D.K., Tsai H.B., Wang H.H., Tsai R.S. Aqueous Polyurethane Dispersions Derived from Polycarbonatediols. J. Appl. Polym. Sci. 2004;94:1723–1729. doi: 10.1002/app.21090. DOI

Lee D.K., Yang Z.D., Tsai H.B., Tsai R.S. Polyurethane Dispersions Derived From Polycarbonatediols and m-Di(2-isocyanatopropyl)benzene. Polym. Eng. Sci. 2009;49:2264–2268. doi: 10.1002/pen.21477. DOI

Serkis M., Poręba R., Hodan J., Kredatusová J., Špírková M. Preparation and characterization of thermoplastic water-borne polycarbonate-based polyurethane dispersions and cast films. J. Appl. Polym. Sci. 2015;132:42672. doi: 10.1002/app.42672. DOI

Špírková M., Hodan J., Kredatusová J., Poręba R., Uchman M., Serkis-Rodzeń M. Functional properties of films based on novel waterborne polyurethane dispersions prepared without a chain-extension step. Prog. Org. Coat. 2018;123:53–62. doi: 10.1016/j.porgcoat.2018.06.014. DOI

Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI

Flores A., Ania F., Baltá-Calleja F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI

Díez-Pascual A.M., Gómez-Fatou M.A., Ania F., Flores A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 2015;67:1–94. doi: 10.1016/j.pmatsci.2014.06.002. DOI

Mezger T.G. The Rheology Handbook for Users of Rotational and Oscillatory Rheometers. 4th ed. Vincentz Network; Hanover, Germany: 2014.

Slouf M., Henning S. Encyclopedia of Polymer Science and Technology. 4th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2022. Micromechanical Properties; pp. 1–50. DOI

Herrmann K. Hardness Testing: Principles and Applications. 1st ed. ASM International; Russell Township, OH, USA: 2011.

Heinrich G., Kluppel M., Vilgis T.A. Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 2002;6:195–203. doi: 10.1016/S1359-0286(02)00030-X. DOI

Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC

Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI

Hardiman M., Vaughan T.J., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 2016;52:157–166. doi: 10.1016/j.polymertesting.2016.04.003. DOI

Liu C.K., Lee S., Sung L.P., Nguyen T. Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 2006;100:033503. doi: 10.1063/1.2220649. DOI

Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and micromechanical properties of polymers with reduced density of entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI

Urdan T.C. Statistics in Plain English. 4th ed. Routledge (Taylor & Francis Group); New York, NY, USA: 2017.

Kang S.K., Kim J.Y., Park C.P., Kim H.U., Kwon D. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. J. Mater. Res. 2010;25:337–343. doi: 10.1557/JMR.2010.0045. DOI

Strachota A., Kroutilová I., Kovářová J., Matějka L. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Thermomechanical Properties. Macromolecules. 2004;37:9457–9464. doi: 10.1021/ma048448y. DOI

Strachota B., Hodan J., Dybal J., Matějka L. Self-Healing Epoxy and Reversible Diels-Alder Based Interpenetrating Networks. Macromol. Mater. Eng. 2021;306:2000474. doi: 10.1002/mame.202000474. DOI

Špírková M., Pavličević J., Strachota A., Poreba R., Bera O., Kaprálková L., Baldrian J., Šlouf M., Lazić N., Budinsky-Simendic J. Novel polycarbonate-based polyurethane elastomers: Composition-property relationship. Eur. Polym. J. 2011;47:959–972. doi: 10.1016/j.eurpolymj.2011.01.001. DOI

Horodecka S., Strachota A., Mossety-Leszczak B., Kisiel M., Strachota B., Šlouf M. Low-Temperature-Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinker: A Passive Smart Material with Potential as Viscoelastic Coupling. Part II—Viscoelastic and Rheological Properties. Polymers. 2020;12:2840. doi: 10.3390/polym12122840. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...