Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development

. 2025 Jan 09 ; 17 (2) : . [epub] 20250109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39861225

Grantová podpora
#4950 Science Fund of the Republic of Serbia
451-03-66/2024-03/200026 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
451-03-66/2024-03/200007 Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test. The antioxidant activity was detected by UV-VIS spectroscopy using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. Embedding the different types of nanoparticles in the polyurethane matrix increased phase mixing, swelling ability, and DPPH scavenging, decreased surface roughness, and differently affected the stiffness of the prepared materials. The composite with zinc ferrite showed improved mechanical properties, hydrophilicity, cell adhesion, and antioxidant activity with similar thermal stability, but lower surface roughness and crosslinking density compared to the pristine polyurethane matrix. The in vitro biocompatibility evaluation demonstrates that all nanocomposites are non-toxic, exhibit good hemocompatibility, and promote cell adhesion, and recommends their use as biocompatible materials for the development of coatings for vascular implants.

Zobrazit více v PubMed

Petrović Z.S., Ferguson J. Polyurethane elastomers. Prog. Polym. Sci. 1991;16:695–836. doi: 10.1016/0079-6700(91)90011-9. DOI

Yilgör E., Yilgör I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci. 2014;39:1165–1195. doi: 10.1016/j.progpolymsci.2013.11.003. DOI

Yilgör İ., McGrath J.E. Polysiloxane Copolymers/Anionic Polymerization. Springer; Berlin/Heidelberg, Germany: 1988. Polysiloxane containing copolymers: A survey of recent developments; pp. 1–86. DOI

Chattopadhyay D.K., Raju K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007;32:352–418. doi: 10.1016/j.progpolymsci.2006.05.003. DOI

Majumdar P., Webster D.C. Preparation of Siloxane−Urethane Coatings Having Spontaneously Formed Stable Biphasic Microtopograpical Surfaces. Macromolecules. 2005;38:5857–5859. doi: 10.1021/ma050967t. DOI

Szycher P.D.M., editor. Szycher’s Handbook of Polyurethanes. 1st ed. CRC Press; Boca Raton, FL, USA: 1999. pp. 1–696. DOI

Boretos J.W., Pierce W.S. Segmented polyurethane: A new elastomer for biomedical applications. Science. 1967;158:1481–1482. doi: 10.1126/science.158.3807.1481. PubMed DOI

Das B., Chattopadhyay P., Mandal M., Voit B., Karak N. Bio-based biodegradable and biocompatible hyperbranched polyurethane: A scaffold for tissue engineering. Macromol. Biosci. 2013;13:126–139. doi: 10.1002/mabi.201200244. PubMed DOI

Deka H., Karak N., Kalita R., Buragohain A. Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon N. Y. 2010;48:2013–2022. doi: 10.1016/j.carbon.2010.02.009. DOI

Jafarzadeh S., Farzaneh A., Haddadi-Asl V., Jouibari I.S. A review on electrically conductive polyurethane nanocomposites: From principle to application. Polym. Compos. 2023;44:8266–8302. doi: 10.1002/pc.27706. DOI

Baheiraei N., Yeganeh H., Ai J., Gharibi R., Azami M., Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;44:24–37. doi: 10.1016/j.msec.2014.07.061. PubMed DOI

Hunyek A., Sirisathitkul C., Jantaratana P. Magnetic and dielectric properties of natural rubber and polyurethane composites filled with cobalt ferrite. Plast. Rubber Compos. 2013;42:89–92. doi: 10.1179/1743289812Y.0000000003. DOI

Mishra A.K., Narayan R., Raju K.V.S.N., Aminabhavi T.M. Hyperbranched polyurethane (HBPU)-urea and HBPU-imide coatings: Effect of chain extender and NCO/OH ratio on their properties. Prog. Org. Coat. 2012;74:134–141. doi: 10.1016/j.porgcoat.2011.11.027. DOI

Žagar E., Huskić M., Žigon M. Structure-to-Properties Relationship of Aliphatic Hyperbranched Polyesters. Macromol. Chem. Phys. 2007;208:1379–1387. doi: 10.1002/macp.200600672. DOI

Žagar E., Žigon M. Aliphatic hyperbranched polyesters based on 2,2-bis(methylol)propionic acid—Determination of structure, solution and bulk properties. Prog. Polym. Sci. 2011;36:53–88. doi: 10.1016/j.progpolymsci.2010.08.004. DOI

Maji P.K., Bhowmick A.K. Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J. Polym. Sci. Part A Polym. Chem. 2009;47:731–745. doi: 10.1002/pola.23185. DOI

Czech P., Okrasa L., Ulanski J., Boiteux G., Mechin F., Cassagnau P. Studies of the molecular dynamics in polyurethane networks with hyperbranched crosslinkers of different coordination numbers. J. Appl. Polym. Sci. 2007;105:89–98. doi: 10.1002/app.26106. DOI

Asif A., Shi W., Shen X., Nie K. Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number. Polymer. 2005;46:11066–11078. doi: 10.1016/j.polymer.2005.09.046. DOI

Gajdošová V., Špírková M., Aguilar Costumbre Y., Krejčíková S., Strachota B., Šlouf M., Strachota A. Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(urethane-urea)/Silica Nanocomposites. Materials. 2023;16:1767. doi: 10.3390/ma16051767. PubMed DOI PMC

Pergal M.V., Gojgić-Cvijović G., Steinhart M., Manojlović D., Ostojić S., Pezo L., Špírková M. Novel polyurethane network/organoclay nanocomposites: Microstructure and physicochemical properties. Prog. Org. Coat. 2022;163:106664. doi: 10.1016/j.porgcoat.2021.106664. DOI

Pergal M.V., Brkljačić J., Tovilović-Kovačević G., Špírková M., Kodranov I.D., Manojlović D.D., Ostojić S., Knežević N.Ž. Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Prog. Org. Coat. 2021;151:106049. doi: 10.1016/j.porgcoat.2020.106049. DOI

Pergal M.V., Dojčinović B.P., Nikodinović-Runić J., Dražić G., Zabukovec Logar N., Ostojić S., Antić B. Synthesis, physicochemical, and antimicrobial characteristics of novel poly(urethane-siloxane) network/silver ferrite nanocomposites. J. Mater. Sci. 2022;57:7827–7848. doi: 10.1007/s10853-022-07178-9. DOI

Yu J., Tonpheng B., Gröbner G., Andersson O. A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules. 2012;45:2841–2849. doi: 10.1021/ma202604d. DOI

Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI

Zhou W., Yu Y., Chen H., Di Salvo F.J., Abruña H.D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013;135:16736–16743. doi: 10.1021/ja409508q. PubMed DOI

Bahrami S., Solouk A., Mirzadeh H., Seifalian A.M. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos. Part B Eng. 2019;168:421–431. doi: 10.1016/j.compositesb.2019.03.044. DOI

Shahrousvand M., Hoseinian M.S., Ghollasi M., Karbalaeimahdi A., Salimi A., Tabar F.A. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior. Mater. Sci. Eng. C. 2017;74:556–567. doi: 10.1016/j.msec.2016.12.117. PubMed DOI

Maji P., Das N., Bhowmick A. Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer. 2010;51:1100–1110. doi: 10.1016/j.polymer.2009.12.040. DOI

Kumar S., Gupta T.K., Varadarajan K.M. Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Compos. Part B Eng. 2019;177:107285. doi: 10.1016/j.compositesb.2019.107285. DOI

Zhou J., Shi D., Wang Y., Chen M., Dong W. Bioinspired MXene/polyurethane plastic films with exceptional flexibility and toughness for electromagnetic interference shielding. Mater. Res. Bull. 2022;154:111939. doi: 10.1016/j.materresbull.2022.111939. DOI

Mozumder M.S., Mairpady A., Mourad A.-H.I. Polymeric nanobiocomposites for biomedical applications. J. Biomed. Mater. Res. B. Appl. Biomater. 2017;105:1241–1259. doi: 10.1002/jbm.b.33633. PubMed DOI

Cai Y., Jiang J.-S., Zheng B., Xie M.-R. Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(ε-caprolactone)-polyurethane nanocomposites. J. Appl. Polym. Sci. 2013;127:49–56. doi: 10.1002/app.36849. DOI

Ashjari M., Mahdavian A.R., Ebrahimi N.G., Mosleh Y. Efficient Dispersion of Magnetite Nanoparticles in the Polyurethane Matrix Through Solution Mixing and Investigation of the Nanocomposite Properties. J. Inorg. Organomet. Polym. Mater. 2010;20:213–219. doi: 10.1007/s10904-010-9337-x. DOI

Razzaq M.Y., Anhalt M., Frormann L., Weidenfeller B. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A. 2007;444:227–235. doi: 10.1016/j.msea.2006.08.083. DOI

Das B., Mandal M., Upadhyay A., Chattopadhyay P., Karak N. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: Smart antibacterial biomaterials for biomedical devices and implants. Biomed. Mater. 2013;8:035003. doi: 10.1088/1748-6041/8/3/035003. PubMed DOI

Mohammadi A., Barikani M., Barmar M. Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polym. Bull. 2015;72:219–234. doi: 10.1007/s00289-014-1268-1. DOI

Venkatesan H.M., Mohammad S.R., Ponnan S., Kim K.J., Gajula P., Kim H., Arun A.P. Cobalt ferrite-embedded polyvinylidene fluoride electrospun nanocomposites as flexible triboelectric sensors for healthcare and polysomnographic monitoring applications. Nano Energy. 2024;129:110003. doi: 10.1016/j.nanoen.2024.110003. DOI

Anju, Masař M., Machovský M., Urbánek M., Šuly P., Hanulíková B., Vilčáková J., Kuřitka I., Yadav R.S. Optimization of CoFe2O4 nanoparticles and graphite fillers to endow thermoplastic polyurethane nanocomposites with superior electromagnetic interference shielding performance. Nanoscale Adv. 2024;6:2149–2165. doi: 10.1039/d3na01053h. PubMed DOI PMC

Pergal M.V., Džunuzović J.V., Poreba R., Micić D., Stefanov P., Pezo L., Špírková M. Surface and thermomechanical characterization of polyurethane networks based on poly(dimethylsiloxane) and hyperbranched polyester. Express Polym. Lett. 2013;7:806–820. doi: 10.3144/expresspolymlett.2013.78. DOI

Marand Å., Dahlin J., Karlsson D., Skarping G., Dalene M. Determination of technical grade isocyanates used in the production of polyurethane plastics. J. Environ. Monit. 2004;6:606–614. doi: 10.1039/b402775b. PubMed DOI

Zisman W.A. Contact Angle, Wettability, and Adhesion. Volume 43. American Chemical Society; Washington, DC, USA: 1964. Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution; pp. 1–51. DOI

Horcas I., Fernández R., Gómez-Rodríguez J.M., Colchero J., Gómez-Herrero J., Baro A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:13705. doi: 10.1063/1.2432410. PubMed DOI

Pergal M.V., Antić V.V., Tovilović G., Nestorov J., Vasiljević-Radović D., Djonlagić J. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ε-caprolactone)-block-poly(dimethylsiloxane)-block -poly(ε-caprolactone) J. Biomater. Sci. Polym. Ed. 2012;23:1629–1657. doi: 10.1163/092050611X589338. PubMed DOI

Xuan S., Hao L., Jiang W., Gong X., Hu Y., Chen Z. Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J. Magn. Magn. Mater. 2007;308:210–213. doi: 10.1016/j.jmmm.2006.05.017. DOI

Pergal M.V., Brkljačić J., Pešić I., Dević G., Dojčinović B.P., Antić B., Tovilović-Kovačević G. Organic-inorganic nanocomposites for biomedical applications; Proceedings of the Eleventh International Conference Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology; Herceg Novi, Montenegro. 19–23 June 2023; p. 99. DOI

Hatami Kahkesh K., Baghbantaraghdari Z., Jamaledin D., Dabbagh Moghaddam F., Kaneko N., Ghovvati M. Synthesis, Characterization, Antioxidant and Antibacterial Activities of Zinc Ferrite and Copper Ferrite Nanoparticles. Mater. Chem. Horiz. 2023;2:49–56. doi: 10.22128/mch.2022.613.1030. DOI

Guo Z., Park S., Wei S., Pereira T., Moldovan M., Karki A.B., Young D.P., Hahn H.T. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology. 2007;18:335704. doi: 10.1088/0957-4484/18/33/335704. DOI

Pavličević J., Špírková M., Jovičić M., Budinski-Simendić J., Pilić B., Baloš S., Bera O. Structure—Functional property relationship of aliphatic polyurethane-silica hybrid films. Prog. Org. Coat. 2019;126:62–74. doi: 10.1016/j.porgcoat.2018.10.011. DOI

Zhang J., Hu C.P. Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. Eur. Polym. J. 2008;44:3708–3714. doi: 10.1016/j.eurpolymj.2008.08.019. DOI

Pavličević J., Špírková M., Bera O., Jovičić M., Pilić B., Baloš S., Budinski-Simendić J. The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos. Part B Eng. 2014;60:673–679. doi: 10.1016/j.compositesb.2014.01.016. DOI

Xu C.-A., Nan B., Lu M., Qu Z., Tan Z., Wu K., Shi J. Effects of polysiloxanes with different molecular weights on in vitro cytotoxicity and properties of polyurethane/cotton–cellulose nanofiber nanocomposite films. Polym. Chem. 2020;11:5225–5237. doi: 10.1039/D0PY00809E. DOI

Malay O., Oguz O., Kosak C., Yilgor E., Yilgor I., Menceloglu Y.Z. Polyurethaneurea–silica nanocomposites: Preparation and investigation of the structure–property behavior. Polymer. 2013;54:5310–5320. doi: 10.1016/j.polymer.2013.07.043. DOI

Greenwood J., Williamson J. Contact of Nominally Flat Surfaces. Proc. R. Soc. Lond. 1966;295:300–319. doi: 10.1098/rspa.1966.0242. DOI

Tanaka K. Elastic/plastic indentation hardness and indentation fracture toughness: The inclusion core model. J. Mater. Sci. 1987;22:1501–1508. doi: 10.1007/BF01233154. DOI

Deka G., Deka H., Karak N. Free Radical Scavenging Magnetic Iron-Based Nanoparticles in Hyperbranched and Linear Polymer Matrices. J. Macromol. Sci. Part A. 2009;46:1128–1135. doi: 10.1080/10601320903245474. DOI

Erbulut D.U., Lazoglu I. Biomaterials for Artificial Organs. Woodhead Publishing; Sawston, UK: 2011. Biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD) pp. 207–235. DOI

Balaji A., Jaganathan S.K., Ismail A.F., Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int. J. Nanomed. 2016;11:4339–4355. doi: 10.2147/IJN.S112265. PubMed DOI PMC

Luu C.H., Nguyen N.-T., Ta H.T. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv. Healthc. Mater. 2024;13:2301039. doi: 10.1002/adhm.202301039. PubMed DOI PMC

Zhang L., Casey B., Galanakis D.K., Marmorat C., Skoog S., Vorvolakos K., Simon M., Rafailovich M.H. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater. 2017;54:164–174. doi: 10.1016/j.actbio.2017.03.002. PubMed DOI

Linneweber J., Dohmen P.M., Kertzscher U., Affeld K., Nosé Y., Konertz W. The effect of surface roughness on activation of the coagulation system and platelet adhesion in rotary blood pumps. Artif. Organs. 2007;31:345–351. doi: 10.1111/j.1525-1594.2007.00391.x. PubMed DOI

Xu C., Yang F., Wang S., Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J. Biomed. Mater. Res. Part A. 2004;71A:154–161. doi: 10.1002/jbm.a.30143. PubMed DOI

Kavanaugh T.E., Clark A.Y., Chan-Chan L.H., Ramírez-Saldaña M., Vargas-Coronado R.F., Cervantes-Uc J.M., Hernández-Sánchez F., García A.J., Cauich-Rodríguez J.V. Human mesenchymal stem cell behavior on segmented polyurethanes prepared with biologically active chain extenders. J. Mater. Sci. Mater. Med. 2016;27:38. doi: 10.1007/s10856-015-5654-5. PubMed DOI PMC

Wei Y., Zhang X., Song Y., Han B., Hu X., Wang X., Lin Y., Deng X. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed. Mater. 2011;6:55008. doi: 10.1088/1748-6041/6/5/055008. PubMed DOI

Martino C.F., Perea H., Hopfner U., Ferguson V.L., Wintermantel E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 2010;31:296–301. doi: 10.1002/bem.20565. PubMed DOI

Ataollahi F., Pramanik S., Moradi A., Dalilottojari A., Pingguan-Murphy B., Wan Abas W.A.B., Abu Osman N.A. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. J. Biomed. Mater. Res. A. 2015;103:2203–2213. doi: 10.1002/jbm.a.35186. PubMed DOI

Tan P.S., Teoh S.H. Effect of stiffness of polycaprolactone (PCL) membrane on cell proliferation. Mater. Sci. Eng. C. 2007;27:304–308. doi: 10.1016/j.msec.2006.03.010. DOI

Bellis S.L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32:4205–4210. doi: 10.1016/j.biomaterials.2011.02.029. PubMed DOI PMC

Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V., Janmey P.A. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 2005;60:24–34. doi: 10.1002/cm.20041. PubMed DOI

Kovacic P., Somanathan R. Nanoparticles: Toxicity, Radicals, Electron Transfer, and Antioxidants. In: Armstrong D., Bharali D.J., editors. Oxidative Stress and Nanotechnology: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2013. pp. 15–35. PubMed DOI

Singh A., Singh N.B., Priya K., Tomar R., Al-Qahtani M.S., Imam M.T., Almalki Z.S., Al Abdulmonem W., Yadav K.K., Park H.-K. Dose-dependent cytotoxicity against lung cancer cells via green synthesized ZnFe2O4/cellulose nanocomposites. e-Polymers. 2023;23:20230113. doi: 10.1515/epoly-2023-0113. DOI

Chen J., Zhang D., Wu L.-P., Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers. 2023;15:2015. doi: 10.3390/polym15092015. PubMed DOI PMC

Udriște A.S., Burdușel A.C., Niculescu A.-G., Rădulescu M., Grumezescu A.M. Coatings for Cardiovascular Stents—An Up-to-Date Review. Int. J. Mol. Sci. 2024;25:1078. doi: 10.3390/ijms25021078. PubMed DOI PMC

Use of International Standard ISO 10993-1, “Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk Management Process”. [(accessed on 28 December 2024)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...