Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000008
Technologická Agentura České Republiky
19-04925S
Grantová Agentura České Republiky
PubMed
33321924
PubMed Central
PMC7763541
DOI
10.3390/polym12122951
PII: polym12122951
Knihovny.cz E-zdroje
- Klíčová slova
- crosslinked polymers, depth-sensing indentation, glass transition temperature, microindentation, nanoindentation, soft elastic rubbers, stiff vitrified networks,
- Publikační typ
- časopisecké články MeSH
This work is focused on the comparison of macro-, micro- and nanomechanical properties of a series of eleven highly homogeneous and chemically very similar polymer networks, consisting of diglycidyl ether of bisphenol A cured with diamine terminated polypropylene oxide. The main objective was to correlate the mechanical properties at multiple length scales, while using very well-defined polymeric materials. By means of synthesis parameters, the glass transition temperature (Tg) of the polymer networks was deliberately varied in a broad range and, as a result, the samples changed their mechanical behavior from very hard and stiff (elastic moduli 4 GPa), through semi-hard and ductile, to very soft and elastic (elastic moduli 0.006 GPa). The mechanical properties were characterized in macroscale (dynamic mechanical analysis; DMA), microscale (quasi-static microindentation hardness testing; MHI) and nanoscale (quasi-static and dynamic nanoindentation hardness testing; NHI). The stiffness-related properties (i.e., storage moduli, indentation moduli and indentation hardness at all length scales) showed strong and statistically significant mutual correlations (all Pearson's correlation coefficients r > 0.9 and corresponding p-values < 0.001). Moreover, the relations among the stiffness-related properties were approximately linear, in agreement with the theoretical prediction. The viscosity-related properties (i.e., loss moduli, damping factors, indentation creep and elastic work of indentation at all length scales) reflected the stiff-ductile-elastic transitions. The fact that the macro-, micro- and nanomechanical properties exhibited the same trends and similar values indicated that not only dynamic, but also quasi-static indentation can be employed as an alternative to well-established DMA characterization of polymer networks.
Zobrazit více v PubMed
Tabor D. The Hardness of Metals. Oxford University Press; New York, NY, USA: 1951.
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
VanLandingham M.R., Villarrubia J.S., Guthrie W.F., Meyers G.F. Nanoindentation of Polymers: An Overview. Macromol. Symp. 2001;167:15–43. doi: 10.1002/1521-3900(200103)167:1<15::AID-MASY15>3.0.CO;2-T. DOI
Oyen M.L. Handbook of Nanoindentation with Biological Applications. Pan Stanford Publishing; Singapore: 2011.
Panteli P.A., Patrickios C.S., Constantinou M., Constantinides G. Multiple Network Hydrogels: A Study of Their Nanoindentation Hardness. Macromol. Symp. 2019;385:1800201. doi: 10.1002/masy.201800201. DOI
Ramakers-van Dorp E., Haenel T., Ciongwa D., Moginger B., Hausnerova B. Development of an Advanced Dynamic Microindentation System to Determine Local Viscoelastic Properties of Polymers. Polymers. 2019;11:833. doi: 10.3390/polym11050833. PubMed DOI PMC
Herrmann K. Instrumented Indentation Test. In: Herrmann K., editor. Hardness Testing: Principles and Application. ASM International; Menlo Park, OH, USA: 2011. pp. 167–234.
Fischer-Cripps A.C. Nanoindentation Testing. In: Fischer-Cripps A.C., editor. Nanoindentation. Springer; New York, NY, USA: 2011. pp. 21–37.
Herrmann K. The Fundamentals of Hardness Testing. In: Herrmann K., editor. Hardness Testing: Principles and Applications. ASM International; Menlo Park, OH, USA: 2011. pp. 1–24.
Balta-Calleja F.J., Fakirov S. Introduction. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 1–10. DOI
Broitman E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribol. Lett. 2017;65:23. doi: 10.1007/s11249-016-0805-5. DOI
Slouf M., Pavlova E., Krejcikova S., Ostafinska A., Zhigunov A., Krzyzanek V., Sowinski P., Piorkowska E. Relationship between morphology and micromechanical properties of alpha, beta and gamma phases of iPP. Polym. Test. 2018;67:522–532. doi: 10.1016/j.polymertesting.2018.03.039. DOI
Oyen M.L., Cook R.F. A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed. Mater. 2009;2:396–407. doi: 10.1016/j.jmbbm.2008.10.002. PubMed DOI
Gibson R.F. A review of recent research on nanoindentation of polymer composites and their constituents. Compos. Sci. Technol. 2014;105:51–65. doi: 10.1016/j.compscitech.2014.09.016. DOI
Slouf M., Vackova T., Nevoralova M., Pokorny D. Micromechanical properties of one-step and sequentially crosslinked UHMWPEs for total joint replacements. Polym. Test. 2015;41:191–197. doi: 10.1016/j.polymertesting.2014.12.003. DOI
Enrique-Jimenez P., Quiles-Díaz S., Salavagione H.J., Fernández-Blázquez J.P., Monclús M.A., de Villoria R.G., Gómez-Fatou M.A., Ania F., Flores A. Nanoindentation mapping of multiscale composites of graphene-reinforced polypropylene and carbon fibres. Compos. Sci. Technol. 2019;169:151–157. doi: 10.1016/j.compscitech.2018.11.009. DOI
Fu K., Chang Y., Tang Y., Zheng B. Effect of loading rate on the creep behaviour of epoxy resin insulators by nanoindentation. J. Mater. Sci: Mater. Electron. 2014;25:3552–3558. doi: 10.1007/s10854-014-2055-3. DOI
Diez-Pascual A.M., Gomez-Fatou M.A., Ania F., Flores A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 2015;67:1–94. doi: 10.1016/j.pmatsci.2014.06.002. DOI
Wrucke A.J., Han C., Majumdar P. Indentation Size Effect of Multiple Orders of Magnitude in Polydimethylsiloxane. J. Appl. Polym. Sci. 2013;128:258–264. doi: 10.1002/app.38161. DOI
Voyiadjis G.Z., Malekmotiei L., Samadi-Dooki A. Indentation size effect in amorphous polymers based on shear transformation mediated plasticity. Polymer. 2018;137:72–81. doi: 10.1016/j.polymer.2018.01.006. DOI
Lin H., Jin T., Lv L., Ai Q. Indentation Size Effect in Pressure-Sensitive Polymer Based on A Criterion for Description of Yield Differential Effects and Shear Transformation-Mediated Plasticity. Polymers. 2019;11:412. doi: 10.3390/polym11030412. PubMed DOI PMC
Lin H., Lv L., Jin T. Investigation on the Influences of Hygrothermal Aging on the Indentation Size Effects and Micro-Indentation Measurements of PMMA. Part I: Experimental Results. Appl. Sci. 2020;10:5454. doi: 10.3390/app10165454. DOI
Mezger T.G. The Rheology Handbook. 4th ed. Vincentz Network GmbH; Hannover, Germany: 2014. pp. 135–210.
Tan N.C.B., Bauer B.J., Plestil J., Barnes J.D., Liu D., Matejka L., Dusek K., Wu W.L. Network structure of bimodal epoxies—A small angle X-ray scattering study. Polymer. 1999;40:4603–4614. doi: 10.1016/S0032-3861(99)00096-8. DOI
Wu W.L., Bauer B.J. Network structure of epoxies—A neutron scattering study: 2. Polymer. 1986;27:169–180. doi: 10.1016/0032-3861(86)90322-8. DOI
Wu W.L., Bauer B.J. Epoxy network structure. 3. Neutron-scattering study of epoxies containing monomers of different molecular weight. Macromolecules. 1986;19:1613–1618. doi: 10.1021/ma00160a021. DOI
Balta-Calleja F.J., Fakirov S. Microhardness Determination in Polymeric Materials. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 11–45. DOI
Flores A., Ania F., Balta-Calleja F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI
Oliver W.C., Pharr M.G. Nanoindentation in Materials Research: Past, present, and future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI
Hochstetter G., Jimenez A., Loubet J.L. Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between Quasi-static and continuous stiffness measurements. J. Macromol. Sci. Part B-Phys. 1999;38:681–692. doi: 10.1080/00222349908248131. DOI
Koch T., Seidler S. Correlations between Indentation Hardness and Yield Stress in Thermoplastic Polymers. Strain. 2009;45:26–33. doi: 10.1111/j.1475-1305.2008.00468.x. DOI
Ostafinska A., Fortelny I., Nevoralova M., Hodan J., Kredatusova J., Slouf M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI
Ostafinska A., Fortelny I., Hodan J., Krejcikova S., Nevoralova M., Kredatusova J., Krulis Z., Kotek J., Slouf M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. J. Mech. Behav. Biomed. Mater. 2017;69:229–241. doi: 10.1016/j.jmbbm.2017.01.015. PubMed DOI
Chudoba T., Griepentrog M. Comparison between conventional Vickers hardness and indentation hardness obtained with different instruments. Z. Metallkd. 2005;96:1242–1246. doi: 10.3139/146.101168. DOI
Kang S., Kim J., Park C., Kim H., Kwon D. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. J. Mater. Res. 2010;25:337–343. doi: 10.1557/JMR.2010.0045. DOI
Hardiman M., Vaughan T.J., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 2016;52:157–166. doi: 10.1016/j.polymertesting.2016.04.003. DOI
Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity: An Introduction. Springer; New York, NY, USA: 2008. pp. 15–54.
Fischer-Cripps A.C. Time Dependent Nanoindentation. In: Fischer-Cripps A.C., editor. Nanoindentation 3rd edition. Springer; New York, NY, USA: 2011. pp. 125–145.
Balta-Calleja F.J., Fakirov S. Microhardness of Glassy Polymers. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 46–79. DOI
Balta-Calleja F.J., Fakirov S. Microharndess of Crystalline Polymers. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 80–126. DOI
Struik L.C.E. Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J. Non-Cryst. Solids. 1991;131–133:395–407. doi: 10.1016/0022-3093(91)90333-2. DOI
Balta-Calleja F.J., Cagiao M.E., Adhikari R., Michler G.H. Relating microhardness to morphology in styrene/butadiene block copolymer/polystyrene blends. Polymer. 2004;45:247–254. doi: 10.1016/j.polymer.2003.10.089. DOI
Slouf M., Pilar J., Dybal J., Sloufova I., Michalkova D., Lukesova M., Zgadzai O., Blank A., Filippov S.K. UV degradation of styrene-butadiene rubber versus high density poly(ethylene) in marine conditions studied by infrared spectroscopy, micro indentation, and electron spin resonance imaging. Polym. Degrad. Stab. 2018;156:132–143. doi: 10.1016/j.polymdegradstab.2018.08.005. DOI
Kupka V., Zhou Q., Ansari F., Tang H., Slouf M., Vojtova L., Berglund L.A., Jancar J. Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk. Polym. Compos. 2019;40:E456–E465. doi: 10.1002/pc.24748. DOI
Yin H., Jin H., Wang C., Sun Y., Yuan Z., Xie H., Wang Z., Cheng R. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J. Therm. Anal. Calorim. 2014;115:1073–1080. doi: 10.1007/s10973-013-3449-9. DOI
Ramsdale-Capper R., Foreman J.P. Internal antiplasticisation in highly crosslinked amine cured multifunctional epoxy resins. Polymer. 2018;146:321–330. doi: 10.1016/j.polymer.2018.05.048. DOI
Ostafinska A., Vackova T., Slouf M. Strong synergistic improvement of mechanical properties in HDPE/COC blends with fibrillar morphology. Polym. Eng. Sci. 2018;58:1955–1964. doi: 10.1002/pen.24805. DOI
Ilie N., Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent. Mater. 2009;25:810–819. doi: 10.1016/j.dental.2009.02.005. PubMed DOI
Kenned J.J., Sankaranarayanasamy K., Binoj J.S., Chelliah S.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos. Sci. Technol. 2020;185:107890. doi: 10.1016/j.compscitech.2019.107890. DOI
Gedde U.W. The Rubber Elastic State. In: Gedde U.W., editor. Polymer Physics. Chapman & Hall; London, UK: 1995. pp. 39–53.
Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. John Wiley & Sons; Chichester, UK: 2004. pp. 31–78.
Strachota A., Rodzen K., Ribot F., Trchova M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI
Gedde U.W. The Glassy Amorphous State. In: Gedde U.W., editor. Polymer Physics. Chapman & Hall; London, UK: 1995. pp. 81–82.
McKinney W. Python for Data Analysis. 2nd ed. O’Reilly; Boston, MA, USA: 2018.
Urdan T.C. Statistics in Plain English. 4th ed. Routledge Taylor and Francis Group; New York, NY, USA: London, UK: 2017.
Fasce L., Cura J., del Grosso M., Bermudez G.G., Frontini P. Effect of nitrogen ion irradiation on the nano-tribological and surface mechanical properties of ultra-high molecular weight polyethylene. Surf. Coat. Technol. 2010;204:3887–3894. doi: 10.1016/j.surfcoat.2010.05.005. DOI
Kotsilkova R., Todorov P., Ivanov E., Kaplas T., Svirko Y., Paddubskaya A., Kuzhir P. Mechanical properties investigation of bilayer graphene/poly(methyl methacrylate) thin films at macro, micro and nanoscale. Carbon. 2016;100:355–366. doi: 10.1016/j.carbon.2016.01.036. DOI
Alisafei F., Han C. Indentation Depth Dependent Mechanical Behavior in Polymers. Adv. Condens. Matter Phys. 2015:391579. doi: 10.1155/2015/391579. DOI
Marsh D.M. Plastic flow in glass. Proc. R. Soc. Lond. Ser. A. 1964;279:420–435. doi: 10.1098/rspa.1964.0114. DOI
Hirst W., Howse M.G.J.W. The indentation of materials by wedges. Proc. Roy. Soc. Lond. A. 1969;311:429–444. doi: 10.1098/rspa.1969.0126. DOI
Johnson K.L. The correlation of indentation experiments. J. Mech. Phys. Sol. 1970;18:115–126. doi: 10.1016/0022-5096(70)90029-3. DOI
Johnson K.L. Contact Mechanics. Cambridge University Press; Cambridge, UK: 1985. DOI
Gao X.L., Jing X.N., Subhash G. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 2006;43:2193–2208. doi: 10.1016/j.ijsolstr.2005.03.062. DOI
Alcala J., Esque-de los Ojos D. Reassessing spherical indentation: Contact regimes and mechanical property extractions. Int. J. Solids Struct. 2010;47:2714–2732. doi: 10.1016/j.ijsolstr.2010.05.025. DOI
Balta Calleja F.J. Microhardness relating to crystalline polymers. In: Kaush H.H., Zachman H.G., editors. Characterization of Polymers in the Solid State I: Part A: NMR and Other Spectroscopic Methods Part B: Mechanical Methods. Volume 66. Springer; Berlin/Heidelberg, Germany: 1985. pp. 117–148. Advances in Polymer Science. DOI
Lesan–Khosh R., Bagheri R., Asgari S. Nanoindentation of isotactic polypropylene: Correlations between hardness, yield stress, and modulus on the local and global scales. J. Appl. Polym. Sci. 2011;121:930–938. doi: 10.1002/app.33635. DOI
Balta-Calleja F.J., Giri L., Ward I.M., Cansfield D.L.M. Microstructure of bulk crystallized linear polyethylene: Correlation of microhardness and yield stress. J. Mater. Sci. 1995;30:1139–1143. doi: 10.1007/BF00356111. DOI
Flores A., Balta-Calleja F.J., Attenburrow G.E., Bassett D.-C. Microhardness studies of chain-extended PE: III. Correlation with yield stress and elastic modulus. Polymer. 2000;41:5431–5435. doi: 10.1016/S0032-3861(99)00755-7. DOI
Gimenez E., Lagaron J.M., Gavara R., Saura J.J. On the linear correlation between microhardness and mechanical properties in polar polymers and blends. Polym. Int. 2003;52:1243–1245. doi: 10.1002/pi.1226. DOI
Cook R.F., Koester K.J., Macosko C.W., Ajbani M. Rheological and Mechanical Behavior of Blends of Styrene-Butadiene Rubber With Polypropylene. Polym. Eng. Sci. 2005;45:1487–1497. doi: 10.1002/pen.20286. DOI
Slouf M., Kotek J., Baldrian J., Kovarova J., Fencl J., Bouda T., Janigova I. Comparison of one-step and sequentially irradiated ultra-high molecular weight polyethylene for total joint replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101B:414–422. doi: 10.1002/jbm.b.32857. PubMed DOI
Balta-Calleja F.J., Kilian H.G. A novel concept of describing elastic and plastic properties of semicrystalline polymers: Polyethylene. Colloid Polym. Sci. 1985;263:697–707. doi: 10.1007/BF01422850. DOI
Lorenzo V., Perena J.M., Fatou J.M.G. Relationships between Mechanical Properties and Microhardness of Polyethylenes. Angew. Makromol. Chem. 1989;172:25–35. doi: 10.1002/apmc.1989.051720103. DOI
Demetrio da Silva V., Ribeiro de Barros I., Silva da Conceicao D.K., Nunes de Almeida K., Schrekker H.S., Amico S.C., Jacobi M.M. Aramid pulp reinforced hydrogenated nitrile butadiene rubber composites with ionic liquid compatibilizers. J. Appl. Polym. Sci. 2020;137:48702. doi: 10.1002/app.48702. DOI
Habeeb Rahiman K., Unnikrishnan G., Sujith G.A., Radhakrishnan C.K. Cure characteristics and mechanical properties of styrene–butadiene rubber/acrylonitrile butadiene rubber. Mater. Lett. 2005;59:633–639. doi: 10.1016/j.matlet.2004.10.050. DOI
Barghamadi M., Karrabi M., Ghoreishy M.H.R., Mohammadian-Gezaz S. Effects of two types of nanoparticles on the cure, rheological, and mechanical properties of rubber nanocomposites based on the NBR/PVC blends. J. Appl. Polym. Sci. 2019;136:47550. doi: 10.1002/app.47550. DOI
van den Heuvel P.W.J., Peijs T., Young R.J. Failure phenomena in two-dimensional multi-fibre microcomposites. Part 4: A Raman spectroscopic study on the influence of the matrix yield stress on stress concentrations. Compos. Part A Appl. Sci. Manuf. 2000;31:165–171. doi: 10.1016/S1359-835X(99)00059-7. DOI