Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties

. 2020 Dec 10 ; 12 (12) : . [epub] 20201210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33321924

Grantová podpora
TN01000008 Technologická Agentura České Republiky
19-04925S Grantová Agentura České Republiky

This work is focused on the comparison of macro-, micro- and nanomechanical properties of a series of eleven highly homogeneous and chemically very similar polymer networks, consisting of diglycidyl ether of bisphenol A cured with diamine terminated polypropylene oxide. The main objective was to correlate the mechanical properties at multiple length scales, while using very well-defined polymeric materials. By means of synthesis parameters, the glass transition temperature (Tg) of the polymer networks was deliberately varied in a broad range and, as a result, the samples changed their mechanical behavior from very hard and stiff (elastic moduli 4 GPa), through semi-hard and ductile, to very soft and elastic (elastic moduli 0.006 GPa). The mechanical properties were characterized in macroscale (dynamic mechanical analysis; DMA), microscale (quasi-static microindentation hardness testing; MHI) and nanoscale (quasi-static and dynamic nanoindentation hardness testing; NHI). The stiffness-related properties (i.e., storage moduli, indentation moduli and indentation hardness at all length scales) showed strong and statistically significant mutual correlations (all Pearson's correlation coefficients r > 0.9 and corresponding p-values < 0.001). Moreover, the relations among the stiffness-related properties were approximately linear, in agreement with the theoretical prediction. The viscosity-related properties (i.e., loss moduli, damping factors, indentation creep and elastic work of indentation at all length scales) reflected the stiff-ductile-elastic transitions. The fact that the macro-, micro- and nanomechanical properties exhibited the same trends and similar values indicated that not only dynamic, but also quasi-static indentation can be employed as an alternative to well-established DMA characterization of polymer networks.

Zobrazit více v PubMed

Tabor D. The Hardness of Metals. Oxford University Press; New York, NY, USA: 1951.

Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

VanLandingham M.R., Villarrubia J.S., Guthrie W.F., Meyers G.F. Nanoindentation of Polymers: An Overview. Macromol. Symp. 2001;167:15–43. doi: 10.1002/1521-3900(200103)167:1<15::AID-MASY15>3.0.CO;2-T. DOI

Oyen M.L. Handbook of Nanoindentation with Biological Applications. Pan Stanford Publishing; Singapore: 2011.

Panteli P.A., Patrickios C.S., Constantinou M., Constantinides G. Multiple Network Hydrogels: A Study of Their Nanoindentation Hardness. Macromol. Symp. 2019;385:1800201. doi: 10.1002/masy.201800201. DOI

Ramakers-van Dorp E., Haenel T., Ciongwa D., Moginger B., Hausnerova B. Development of an Advanced Dynamic Microindentation System to Determine Local Viscoelastic Properties of Polymers. Polymers. 2019;11:833. doi: 10.3390/polym11050833. PubMed DOI PMC

Herrmann K. Instrumented Indentation Test. In: Herrmann K., editor. Hardness Testing: Principles and Application. ASM International; Menlo Park, OH, USA: 2011. pp. 167–234.

Fischer-Cripps A.C. Nanoindentation Testing. In: Fischer-Cripps A.C., editor. Nanoindentation. Springer; New York, NY, USA: 2011. pp. 21–37.

Herrmann K. The Fundamentals of Hardness Testing. In: Herrmann K., editor. Hardness Testing: Principles and Applications. ASM International; Menlo Park, OH, USA: 2011. pp. 1–24.

Balta-Calleja F.J., Fakirov S. Introduction. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 1–10. DOI

Broitman E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribol. Lett. 2017;65:23. doi: 10.1007/s11249-016-0805-5. DOI

Slouf M., Pavlova E., Krejcikova S., Ostafinska A., Zhigunov A., Krzyzanek V., Sowinski P., Piorkowska E. Relationship between morphology and micromechanical properties of alpha, beta and gamma phases of iPP. Polym. Test. 2018;67:522–532. doi: 10.1016/j.polymertesting.2018.03.039. DOI

Oyen M.L., Cook R.F. A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed. Mater. 2009;2:396–407. doi: 10.1016/j.jmbbm.2008.10.002. PubMed DOI

Gibson R.F. A review of recent research on nanoindentation of polymer composites and their constituents. Compos. Sci. Technol. 2014;105:51–65. doi: 10.1016/j.compscitech.2014.09.016. DOI

Slouf M., Vackova T., Nevoralova M., Pokorny D. Micromechanical properties of one-step and sequentially crosslinked UHMWPEs for total joint replacements. Polym. Test. 2015;41:191–197. doi: 10.1016/j.polymertesting.2014.12.003. DOI

Enrique-Jimenez P., Quiles-Díaz S., Salavagione H.J., Fernández-Blázquez J.P., Monclús M.A., de Villoria R.G., Gómez-Fatou M.A., Ania F., Flores A. Nanoindentation mapping of multiscale composites of graphene-reinforced polypropylene and carbon fibres. Compos. Sci. Technol. 2019;169:151–157. doi: 10.1016/j.compscitech.2018.11.009. DOI

Fu K., Chang Y., Tang Y., Zheng B. Effect of loading rate on the creep behaviour of epoxy resin insulators by nanoindentation. J. Mater. Sci: Mater. Electron. 2014;25:3552–3558. doi: 10.1007/s10854-014-2055-3. DOI

Diez-Pascual A.M., Gomez-Fatou M.A., Ania F., Flores A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 2015;67:1–94. doi: 10.1016/j.pmatsci.2014.06.002. DOI

Wrucke A.J., Han C., Majumdar P. Indentation Size Effect of Multiple Orders of Magnitude in Polydimethylsiloxane. J. Appl. Polym. Sci. 2013;128:258–264. doi: 10.1002/app.38161. DOI

Voyiadjis G.Z., Malekmotiei L., Samadi-Dooki A. Indentation size effect in amorphous polymers based on shear transformation mediated plasticity. Polymer. 2018;137:72–81. doi: 10.1016/j.polymer.2018.01.006. DOI

Lin H., Jin T., Lv L., Ai Q. Indentation Size Effect in Pressure-Sensitive Polymer Based on A Criterion for Description of Yield Differential Effects and Shear Transformation-Mediated Plasticity. Polymers. 2019;11:412. doi: 10.3390/polym11030412. PubMed DOI PMC

Lin H., Lv L., Jin T. Investigation on the Influences of Hygrothermal Aging on the Indentation Size Effects and Micro-Indentation Measurements of PMMA. Part I: Experimental Results. Appl. Sci. 2020;10:5454. doi: 10.3390/app10165454. DOI

Mezger T.G. The Rheology Handbook. 4th ed. Vincentz Network GmbH; Hannover, Germany: 2014. pp. 135–210.

Tan N.C.B., Bauer B.J., Plestil J., Barnes J.D., Liu D., Matejka L., Dusek K., Wu W.L. Network structure of bimodal epoxies—A small angle X-ray scattering study. Polymer. 1999;40:4603–4614. doi: 10.1016/S0032-3861(99)00096-8. DOI

Wu W.L., Bauer B.J. Network structure of epoxies—A neutron scattering study: 2. Polymer. 1986;27:169–180. doi: 10.1016/0032-3861(86)90322-8. DOI

Wu W.L., Bauer B.J. Epoxy network structure. 3. Neutron-scattering study of epoxies containing monomers of different molecular weight. Macromolecules. 1986;19:1613–1618. doi: 10.1021/ma00160a021. DOI

Balta-Calleja F.J., Fakirov S. Microhardness Determination in Polymeric Materials. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 11–45. DOI

Flores A., Ania F., Balta-Calleja F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI

Oliver W.C., Pharr M.G. Nanoindentation in Materials Research: Past, present, and future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI

Hochstetter G., Jimenez A., Loubet J.L. Strain-rate effects on hardness of glassy polymers in the nanoscale range. Comparison between Quasi-static and continuous stiffness measurements. J. Macromol. Sci. Part B-Phys. 1999;38:681–692. doi: 10.1080/00222349908248131. DOI

Koch T., Seidler S. Correlations between Indentation Hardness and Yield Stress in Thermoplastic Polymers. Strain. 2009;45:26–33. doi: 10.1111/j.1475-1305.2008.00468.x. DOI

Ostafinska A., Fortelny I., Nevoralova M., Hodan J., Kredatusova J., Slouf M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015;5:98971–98982. doi: 10.1039/C5RA21178F. DOI

Ostafinska A., Fortelny I., Hodan J., Krejcikova S., Nevoralova M., Kredatusova J., Krulis Z., Kotek J., Slouf M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. J. Mech. Behav. Biomed. Mater. 2017;69:229–241. doi: 10.1016/j.jmbbm.2017.01.015. PubMed DOI

Chudoba T., Griepentrog M. Comparison between conventional Vickers hardness and indentation hardness obtained with different instruments. Z. Metallkd. 2005;96:1242–1246. doi: 10.3139/146.101168. DOI

Kang S., Kim J., Park C., Kim H., Kwon D. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests. J. Mater. Res. 2010;25:337–343. doi: 10.1557/JMR.2010.0045. DOI

Hardiman M., Vaughan T.J., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 2016;52:157–166. doi: 10.1016/j.polymertesting.2016.04.003. DOI

Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity: An Introduction. Springer; New York, NY, USA: 2008. pp. 15–54.

Fischer-Cripps A.C. Time Dependent Nanoindentation. In: Fischer-Cripps A.C., editor. Nanoindentation 3rd edition. Springer; New York, NY, USA: 2011. pp. 125–145.

Balta-Calleja F.J., Fakirov S. Microhardness of Glassy Polymers. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 46–79. DOI

Balta-Calleja F.J., Fakirov S. Microharndess of Crystalline Polymers. In: Balta-Calleja F.J., Fakirov S., editors. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. pp. 80–126. DOI

Struik L.C.E. Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J. Non-Cryst. Solids. 1991;131–133:395–407. doi: 10.1016/0022-3093(91)90333-2. DOI

Balta-Calleja F.J., Cagiao M.E., Adhikari R., Michler G.H. Relating microhardness to morphology in styrene/butadiene block copolymer/polystyrene blends. Polymer. 2004;45:247–254. doi: 10.1016/j.polymer.2003.10.089. DOI

Slouf M., Pilar J., Dybal J., Sloufova I., Michalkova D., Lukesova M., Zgadzai O., Blank A., Filippov S.K. UV degradation of styrene-butadiene rubber versus high density poly(ethylene) in marine conditions studied by infrared spectroscopy, micro indentation, and electron spin resonance imaging. Polym. Degrad. Stab. 2018;156:132–143. doi: 10.1016/j.polymdegradstab.2018.08.005. DOI

Kupka V., Zhou Q., Ansari F., Tang H., Slouf M., Vojtova L., Berglund L.A., Jancar J. Well-dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solvent-free procedure in bulk. Polym. Compos. 2019;40:E456–E465. doi: 10.1002/pc.24748. DOI

Yin H., Jin H., Wang C., Sun Y., Yuan Z., Xie H., Wang Z., Cheng R. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J. Therm. Anal. Calorim. 2014;115:1073–1080. doi: 10.1007/s10973-013-3449-9. DOI

Ramsdale-Capper R., Foreman J.P. Internal antiplasticisation in highly crosslinked amine cured multifunctional epoxy resins. Polymer. 2018;146:321–330. doi: 10.1016/j.polymer.2018.05.048. DOI

Ostafinska A., Vackova T., Slouf M. Strong synergistic improvement of mechanical properties in HDPE/COC blends with fibrillar morphology. Polym. Eng. Sci. 2018;58:1955–1964. doi: 10.1002/pen.24805. DOI

Ilie N., Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent. Mater. 2009;25:810–819. doi: 10.1016/j.dental.2009.02.005. PubMed DOI

Kenned J.J., Sankaranarayanasamy K., Binoj J.S., Chelliah S.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos. Sci. Technol. 2020;185:107890. doi: 10.1016/j.compscitech.2019.107890. DOI

Gedde U.W. The Rubber Elastic State. In: Gedde U.W., editor. Polymer Physics. Chapman & Hall; London, UK: 1995. pp. 39–53.

Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. John Wiley & Sons; Chichester, UK: 2004. pp. 31–78.

Strachota A., Rodzen K., Ribot F., Trchova M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI

Gedde U.W. The Glassy Amorphous State. In: Gedde U.W., editor. Polymer Physics. Chapman & Hall; London, UK: 1995. pp. 81–82.

McKinney W. Python for Data Analysis. 2nd ed. O’Reilly; Boston, MA, USA: 2018.

Urdan T.C. Statistics in Plain English. 4th ed. Routledge Taylor and Francis Group; New York, NY, USA: London, UK: 2017.

Fasce L., Cura J., del Grosso M., Bermudez G.G., Frontini P. Effect of nitrogen ion irradiation on the nano-tribological and surface mechanical properties of ultra-high molecular weight polyethylene. Surf. Coat. Technol. 2010;204:3887–3894. doi: 10.1016/j.surfcoat.2010.05.005. DOI

Kotsilkova R., Todorov P., Ivanov E., Kaplas T., Svirko Y., Paddubskaya A., Kuzhir P. Mechanical properties investigation of bilayer graphene/poly(methyl methacrylate) thin films at macro, micro and nanoscale. Carbon. 2016;100:355–366. doi: 10.1016/j.carbon.2016.01.036. DOI

Alisafei F., Han C. Indentation Depth Dependent Mechanical Behavior in Polymers. Adv. Condens. Matter Phys. 2015:391579. doi: 10.1155/2015/391579. DOI

Marsh D.M. Plastic flow in glass. Proc. R. Soc. Lond. Ser. A. 1964;279:420–435. doi: 10.1098/rspa.1964.0114. DOI

Hirst W., Howse M.G.J.W. The indentation of materials by wedges. Proc. Roy. Soc. Lond. A. 1969;311:429–444. doi: 10.1098/rspa.1969.0126. DOI

Johnson K.L. The correlation of indentation experiments. J. Mech. Phys. Sol. 1970;18:115–126. doi: 10.1016/0022-5096(70)90029-3. DOI

Johnson K.L. Contact Mechanics. Cambridge University Press; Cambridge, UK: 1985. DOI

Gao X.L., Jing X.N., Subhash G. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 2006;43:2193–2208. doi: 10.1016/j.ijsolstr.2005.03.062. DOI

Alcala J., Esque-de los Ojos D. Reassessing spherical indentation: Contact regimes and mechanical property extractions. Int. J. Solids Struct. 2010;47:2714–2732. doi: 10.1016/j.ijsolstr.2010.05.025. DOI

Balta Calleja F.J. Microhardness relating to crystalline polymers. In: Kaush H.H., Zachman H.G., editors. Characterization of Polymers in the Solid State I: Part A: NMR and Other Spectroscopic Methods Part B: Mechanical Methods. Volume 66. Springer; Berlin/Heidelberg, Germany: 1985. pp. 117–148. Advances in Polymer Science. DOI

Lesan–Khosh R., Bagheri R., Asgari S. Nanoindentation of isotactic polypropylene: Correlations between hardness, yield stress, and modulus on the local and global scales. J. Appl. Polym. Sci. 2011;121:930–938. doi: 10.1002/app.33635. DOI

Balta-Calleja F.J., Giri L., Ward I.M., Cansfield D.L.M. Microstructure of bulk crystallized linear polyethylene: Correlation of microhardness and yield stress. J. Mater. Sci. 1995;30:1139–1143. doi: 10.1007/BF00356111. DOI

Flores A., Balta-Calleja F.J., Attenburrow G.E., Bassett D.-C. Microhardness studies of chain-extended PE: III. Correlation with yield stress and elastic modulus. Polymer. 2000;41:5431–5435. doi: 10.1016/S0032-3861(99)00755-7. DOI

Gimenez E., Lagaron J.M., Gavara R., Saura J.J. On the linear correlation between microhardness and mechanical properties in polar polymers and blends. Polym. Int. 2003;52:1243–1245. doi: 10.1002/pi.1226. DOI

Cook R.F., Koester K.J., Macosko C.W., Ajbani M. Rheological and Mechanical Behavior of Blends of Styrene-Butadiene Rubber With Polypropylene. Polym. Eng. Sci. 2005;45:1487–1497. doi: 10.1002/pen.20286. DOI

Slouf M., Kotek J., Baldrian J., Kovarova J., Fencl J., Bouda T., Janigova I. Comparison of one-step and sequentially irradiated ultra-high molecular weight polyethylene for total joint replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101B:414–422. doi: 10.1002/jbm.b.32857. PubMed DOI

Balta-Calleja F.J., Kilian H.G. A novel concept of describing elastic and plastic properties of semicrystalline polymers: Polyethylene. Colloid Polym. Sci. 1985;263:697–707. doi: 10.1007/BF01422850. DOI

Lorenzo V., Perena J.M., Fatou J.M.G. Relationships between Mechanical Properties and Microhardness of Polyethylenes. Angew. Makromol. Chem. 1989;172:25–35. doi: 10.1002/apmc.1989.051720103. DOI

Demetrio da Silva V., Ribeiro de Barros I., Silva da Conceicao D.K., Nunes de Almeida K., Schrekker H.S., Amico S.C., Jacobi M.M. Aramid pulp reinforced hydrogenated nitrile butadiene rubber composites with ionic liquid compatibilizers. J. Appl. Polym. Sci. 2020;137:48702. doi: 10.1002/app.48702. DOI

Habeeb Rahiman K., Unnikrishnan G., Sujith G.A., Radhakrishnan C.K. Cure characteristics and mechanical properties of styrene–butadiene rubber/acrylonitrile butadiene rubber. Mater. Lett. 2005;59:633–639. doi: 10.1016/j.matlet.2004.10.050. DOI

Barghamadi M., Karrabi M., Ghoreishy M.H.R., Mohammadian-Gezaz S. Effects of two types of nanoparticles on the cure, rheological, and mechanical properties of rubber nanocomposites based on the NBR/PVC blends. J. Appl. Polym. Sci. 2019;136:47550. doi: 10.1002/app.47550. DOI

van den Heuvel P.W.J., Peijs T., Young R.J. Failure phenomena in two-dimensional multi-fibre microcomposites. Part 4: A Raman spectroscopic study on the influence of the matrix yield stress on stress concentrations. Compos. Part A Appl. Sci. Manuf. 2000;31:165–171. doi: 10.1016/S1359-835X(99)00059-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...