Development of an Advanced Dynamic Microindentation System to Determine Local Viscoelastic Properties of Polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
03FH051PX4
German Ministry of Education and Research
NPU I (LO1504)
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31071983
PubMed Central
PMC6572679
DOI
10.3390/polym11050833
PII: polym11050833
Knihovny.cz E-zdroje
- Klíčová slova
- complex modulus, dynamic indentation, dynamic mechanical analysis, spatial resolution, tungsten cone indenter,
- Publikační typ
- časopisecké články MeSH
This study presents a microindentation system which allows spatially resolved local as well as bulk viscoelastic material information to be obtained within one instrument. The microindentation method was merged with dynamic mechanical analysis (DMA) for a tungsten cone indenter. Three tungsten cone indenters were investigated: tungsten electrode, tungsten electrode + 2% lanthanum, and tungsten electrode + rare earth elements. Only the tungsten electrode + 2% lanthanum indenter showed the sinusoidal response, and its geometry remained unaffected by the repeated indentations. Complex moduli obtained from dynamic microindentation for high-density polyethylene, polybutylene terephthalate, polycarbonate, and thermoplastic polyurethane are in agreement with the literature. Additionally, by implementing a specially developed x-y-stage, this study showed that dynamic microindentation with a tungsten cone indenter was an adequate method to determine spatially resolved local viscoelastic surface properties.
Centre of Polymer Systems Tomas Bata University in Zlín tr T Bati 5678 760 01 Zlín Czech Republic
Faculty of Technology Tomas Bata University in Zlín Vavrečkova 275 760 01 Zlín Czech Republic
Netzsch Gerätebau GmbH Wittelbachstrasse 42 D 95100 Selb Germany
Zobrazit více v PubMed
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Hertz H. On Contact of Elastic Solids and on Hardness. McMillan & Co.; London, UK: 1896. pp. 156–171.
Sneddon I.N. The relation between load and penetration in axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965;3:47–57.
Ramakers-van Dorp E., Haenel T., Sturm F., Möginger B., Hausnerova B. On merging DMA and microindentation to determine local mechanical properties of polymers. Polym. Test. 2018;68:359–364. doi: 10.1016/j.polymertesting.2018.04.020. DOI
Odegard G.M., Gates T.S., Herring H.M. Characterization of viscoelastic properties of polymer materials through nanoindentation. Exp. Mech. 2005;45:130–136. doi: 10.1007/BF02428185. DOI
White C.C., VanLandingham M.R., Drzal P.L., Chang N.-K., Chang S.-H. Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic Testing. J. Polym. Sci. B Polym. Phys. 2005;43:1812–1824. doi: 10.1002/polb.20455. DOI
VanLandingham M.R. Review of instrumented indentation. J. Res. Natl. Inst. Stand. Technol. 2003;108:249–265. doi: 10.6028/jres.108.024. PubMed DOI PMC
Fischer-Cripps A.C. Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 2004;19:2981–2988. doi: 10.1557/JMR.2004.0368. DOI
Herbert E.G., Oliver W.C., Pharr G.M. Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 2008;41:1–9. doi: 10.1088/0022-3727/41/7/074021. DOI
Cohen S.R., Kalfon-Cohen E. Dynamic nanoindentation by instrumented nanoindentation and force microscopy: A comparative review. Beilstein J. Nanotechnol. 2013;4:815–833. doi: 10.3762/bjnano.4.93. PubMed DOI PMC
Fischer-Cripps A.C. Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Tech. 2006;200:4153–4165. doi: 10.1016/j.surfcoat.2005.03.018. DOI
Schwarz U.D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Coll. Interf. Sci. 2003;261:99–106. doi: 10.1016/S0021-9797(03)00049-3. PubMed DOI
Johnson K.L., Kendall K., Roberts A.D. Surface energy and contact of elastic solids. Proc. R. Soc. Lond. A. 1971;324:301–313. doi: 10.1098/rspa.1971.0141. DOI
Maugis D., Barquins M. Adhesive contact of a conical punch on an elastic half-space. J. Phys. Lett. 1981;42:95–97. doi: 10.1051/jphyslet:0198100420509500. DOI
Pharr G.M., Herbert E.G., Goa Y. The indentation size effect: A critical examination of experimental observations and mechanical interpretations. Annu. Rev. Mater. Res. 2010;40:271–292. doi: 10.1146/annurev-matsci-070909-104456. DOI
Han C. Influence of the molecular structure on indentation size effect in polymers. Mat. Sci. Eng. A. 2010;527:619–624. doi: 10.1016/j.msea.2009.08.033. DOI
Han C., Sanei S.H.R., Alisafaei F. On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers. J. Polym. Eng. 2015;36:1–9. doi: 10.1515/polyeng-2015-0030. DOI
Tatiraju R.V.S., Han C. Rate dependence of indentation size effects in filled silicone rubber. J. Mech. Mater. Struct. 2010;5:277–288. doi: 10.2140/jomms.2010.5.277. DOI
Troyon M., Huang L. Comparison of different analysis methods in nanoindentation and influence on the correction factor for contact area. Surf. Coat. Technol. 2006;201:1613–1619. doi: 10.1016/j.surfcoat.2006.02.033. DOI
Tranchida D., Piccarolo S., Loos J., Alexeev A. Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules. 2007;40:1259–1267. doi: 10.1021/ma062140k. DOI
Hay J. Introduction to instrumented indentation testing. Exp. Tech. 2009;33:66–72. doi: 10.1111/j.1747-1567.2009.00541.x. DOI
Hardiman M., Vaughan T.J., McCarthy C.T. A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures. Compos. Struct. 2017;180:782–798. doi: 10.1016/j.compstruct.2017.08.004. DOI
Kermouche G., Loubet J.L., Bergheau J.M. Extraction of stress-strain curves of elastic-viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mech. Mat. 2008;40:271–283. doi: 10.1016/j.mechmat.2007.08.003. DOI
Hardiman H., Vaughan T.J., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 2016;52:157–166. doi: 10.1016/j.polymertesting.2016.04.003. DOI
Jee A., Lee M. Comparative analysis on the nanoindentation of polymers using atomic force microscopy. Polym. Test. 2010;29:95–99. doi: 10.1016/j.polymertesting.2009.09.009. DOI
[(accessed on 12 February 2019)]; Available online: https://www.materialdatacenter.com.
[(accessed on 12 February 2019)]; Available online: https://www.campusplastics.com.
[(accessed on 12 February 2019)]; Available online: https://polymerdatabase.com.
Technical Data Sheet, Lupolen 4261AG. [(accessed on 12 February 2019)]; Available online: https://www.lyondellbasell.com.