Development of an Advanced Dynamic Microindentation System to Determine Local Viscoelastic Properties of Polymers

. 2019 May 08 ; 11 (5) : . [epub] 20190508

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31071983

Grantová podpora
03FH051PX4 German Ministry of Education and Research
NPU I (LO1504) Ministerstvo Školství, Mládeže a Tělovýchovy

This study presents a microindentation system which allows spatially resolved local as well as bulk viscoelastic material information to be obtained within one instrument. The microindentation method was merged with dynamic mechanical analysis (DMA) for a tungsten cone indenter. Three tungsten cone indenters were investigated: tungsten electrode, tungsten electrode + 2% lanthanum, and tungsten electrode + rare earth elements. Only the tungsten electrode + 2% lanthanum indenter showed the sinusoidal response, and its geometry remained unaffected by the repeated indentations. Complex moduli obtained from dynamic microindentation for high-density polyethylene, polybutylene terephthalate, polycarbonate, and thermoplastic polyurethane are in agreement with the literature. Additionally, by implementing a specially developed x-y-stage, this study showed that dynamic microindentation with a tungsten cone indenter was an adequate method to determine spatially resolved local viscoelastic surface properties.

Zobrazit více v PubMed

Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI

Hertz H. On Contact of Elastic Solids and on Hardness. McMillan & Co.; London, UK: 1896. pp. 156–171.

Sneddon I.N. The relation between load and penetration in axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965;3:47–57.

Ramakers-van Dorp E., Haenel T., Sturm F., Möginger B., Hausnerova B. On merging DMA and microindentation to determine local mechanical properties of polymers. Polym. Test. 2018;68:359–364. doi: 10.1016/j.polymertesting.2018.04.020. DOI

Odegard G.M., Gates T.S., Herring H.M. Characterization of viscoelastic properties of polymer materials through nanoindentation. Exp. Mech. 2005;45:130–136. doi: 10.1007/BF02428185. DOI

White C.C., VanLandingham M.R., Drzal P.L., Chang N.-K., Chang S.-H. Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic Testing. J. Polym. Sci. B Polym. Phys. 2005;43:1812–1824. doi: 10.1002/polb.20455. DOI

VanLandingham M.R. Review of instrumented indentation. J. Res. Natl. Inst. Stand. Technol. 2003;108:249–265. doi: 10.6028/jres.108.024. PubMed DOI PMC

Fischer-Cripps A.C. Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 2004;19:2981–2988. doi: 10.1557/JMR.2004.0368. DOI

Herbert E.G., Oliver W.C., Pharr G.M. Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 2008;41:1–9. doi: 10.1088/0022-3727/41/7/074021. DOI

Cohen S.R., Kalfon-Cohen E. Dynamic nanoindentation by instrumented nanoindentation and force microscopy: A comparative review. Beilstein J. Nanotechnol. 2013;4:815–833. doi: 10.3762/bjnano.4.93. PubMed DOI PMC

Fischer-Cripps A.C. Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Tech. 2006;200:4153–4165. doi: 10.1016/j.surfcoat.2005.03.018. DOI

Schwarz U.D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Coll. Interf. Sci. 2003;261:99–106. doi: 10.1016/S0021-9797(03)00049-3. PubMed DOI

Johnson K.L., Kendall K., Roberts A.D. Surface energy and contact of elastic solids. Proc. R. Soc. Lond. A. 1971;324:301–313. doi: 10.1098/rspa.1971.0141. DOI

Maugis D., Barquins M. Adhesive contact of a conical punch on an elastic half-space. J. Phys. Lett. 1981;42:95–97. doi: 10.1051/jphyslet:0198100420509500. DOI

Pharr G.M., Herbert E.G., Goa Y. The indentation size effect: A critical examination of experimental observations and mechanical interpretations. Annu. Rev. Mater. Res. 2010;40:271–292. doi: 10.1146/annurev-matsci-070909-104456. DOI

Han C. Influence of the molecular structure on indentation size effect in polymers. Mat. Sci. Eng. A. 2010;527:619–624. doi: 10.1016/j.msea.2009.08.033. DOI

Han C., Sanei S.H.R., Alisafaei F. On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers. J. Polym. Eng. 2015;36:1–9. doi: 10.1515/polyeng-2015-0030. DOI

Tatiraju R.V.S., Han C. Rate dependence of indentation size effects in filled silicone rubber. J. Mech. Mater. Struct. 2010;5:277–288. doi: 10.2140/jomms.2010.5.277. DOI

Troyon M., Huang L. Comparison of different analysis methods in nanoindentation and influence on the correction factor for contact area. Surf. Coat. Technol. 2006;201:1613–1619. doi: 10.1016/j.surfcoat.2006.02.033. DOI

Tranchida D., Piccarolo S., Loos J., Alexeev A. Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules. 2007;40:1259–1267. doi: 10.1021/ma062140k. DOI

Hay J. Introduction to instrumented indentation testing. Exp. Tech. 2009;33:66–72. doi: 10.1111/j.1747-1567.2009.00541.x. DOI

Hardiman M., Vaughan T.J., McCarthy C.T. A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures. Compos. Struct. 2017;180:782–798. doi: 10.1016/j.compstruct.2017.08.004. DOI

Kermouche G., Loubet J.L., Bergheau J.M. Extraction of stress-strain curves of elastic-viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mech. Mat. 2008;40:271–283. doi: 10.1016/j.mechmat.2007.08.003. DOI

Hardiman H., Vaughan T.J., McCarthy C.T. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation. Polym. Test. 2016;52:157–166. doi: 10.1016/j.polymertesting.2016.04.003. DOI

Jee A., Lee M. Comparative analysis on the nanoindentation of polymers using atomic force microscopy. Polym. Test. 2010;29:95–99. doi: 10.1016/j.polymertesting.2009.09.009. DOI

[(accessed on 12 February 2019)]; Available online: https://www.materialdatacenter.com.

[(accessed on 12 February 2019)]; Available online: https://www.campusplastics.com.

[(accessed on 12 February 2019)]; Available online: https://polymerdatabase.com.

Technical Data Sheet, Lupolen 4261AG. [(accessed on 12 February 2019)]; Available online: https://www.lyondellbasell.com.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties

. 2020 Dec 10 ; 12 (12) : . [epub] 20201210

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...