Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000008
Technology Agency of the Czech Republic
NU21-06-00084
Czech Health Research Council
19-04925S
Czech Science Foundation
LM2018110
Ministry of Youth, Health and Sports of the Czech Republic
PubMed
35161043
PubMed Central
PMC8840403
DOI
10.3390/ma15031101
PII: ma15031101
Knihovny.cz E-zdroje
- Klíčová slova
- microindentation, micromechanical properties, poly(ε-caprolactone), polymer blends, structure–properties relations, thermoplastic starch,
- Publikační typ
- časopisecké články MeSH
We report a reproducible preparation and characterization of highly homogeneous thermoplastic starch/pol(ε-caprolactone) blends (TPS/PCL) with a minimal thermomechanical degradation and co-continuous morphology. These materials would be suitable for biomedical applications, specifically for the local release of antibiotics (ATB) from the TPS phase. The TPS/PCL blends were prepared in the whole concentration range. In agreement with theoretical predictions based on component viscosities, the co-continuous morphology was found for TPS/PCL blends with a composition of 70/30 wt.%. The minimal thermomechanical degradation of the blends was achieved by an optimization of the processing conditions and by keeping processing temperatures as low as possible, because higher temperatures might damage ATB in the final application. The blends' homogeneity was verified by scanning electron microscopy. The co-continuous morphology was confirmed by submicron-computed tomography. The mechanical performance of the blends was characterized in both microscale (by an instrumented microindentation hardness testing; MHI) and macroscale (by dynamic thermomechanical analysis; DMTA). The elastic moduli of TPS increased ca four times in the TPS/PCL (70/30) blend. The correlations between elastic moduli measured by MHI and DMTA were very strong, which implied that, in the future studies, it would be possible to use just micromechanical testing that does not require large specimens.
Zobrazit více v PubMed
Luckachan G.E., Pillai C.K.S. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011;19:637–676. doi: 10.1007/s10924-011-0317-1. DOI
Colnik M., Knez-Hrncic M., Skerget M., Knez Z. Biodegradable Polymers, Current Trends of Research and Their Applications, a Review. Chem. Ind. Chem. Eng. Q. 2020;26:401–418. doi: 10.2298/CICEQ191210018C. DOI
European Bioplastics. [(accessed on 20 December 2021)]. Available online: https://www.european-bioplastics.org/bioplastics/materials/
Mohammadi Nafchi A., Moradpour M., Saeidi M., Alias A.K. Thermoplastic Starches: Properties, Challenges, and Prospects. Starch/Stärke. 2013;65:61–72. doi: 10.1002/star.201200201. DOI
Liu H., Xie F., Yu L., Chen L., Li L. Thermal Processing of Starch-Based Polymers. Prog. Polym. Sci. 2009;34:1348–1368. doi: 10.1016/j.progpolymsci.2009.07.001. DOI
Huneault M.A., Li H. Preparation and Properties of Extruded Thermoplastic Starch/Polymer Blends. J. Appl. Polym. Sci. 2012;126:E96–E108. doi: 10.1002/app.36724. DOI
Ren J., Fu H., Ren T., Yuan W. Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate) Carbohydr. Polym. 2009;77:576–582. doi: 10.1016/j.carbpol.2009.01.024. DOI
Rodriguez-Gonzalez F.J., Ramsay B.A., Favis B.D. Rheological and Thermal Properties of Thermoplastic Starch with High Glycerol Content. Carbohydr. Polym. 2004;58:139–147. doi: 10.1016/j.carbpol.2004.06.002. DOI
Bootklad M., Kaewtatip K. Biodegradation of Thermoplastic Starch/Eggshell Powder Composites. Carbohydr. Polym. 2013;97:315–320. doi: 10.1016/j.carbpol.2013.05.030. PubMed DOI
Matzinos P., Tserki V., Kontoyiannis A., Panayiotou C. Processing and Characterization of Starch/Polycaprolactone Products. Polym. Degrad. Stab. 2002;77:17–24. doi: 10.1016/S0141-3910(02)00072-1. DOI
Van Der Burgt M.C., Van Der Woude M.E., Janssen L.P.B.M. The Influence of Plasticizer on Extruded Thermoplastic Starch. J. Vinyl Addit. Technol. 1996;2:170–174. doi: 10.1002/vnl.10116. DOI
Ivanič F., Jochec-Mošková D., Janigová I., Chodák I. Physical Properties of Starch Plasticized by a Mixture of Plasticizers. Eur. Polym. J. 2017;93:843–849. doi: 10.1016/j.eurpolymj.2017.04.006. DOI
Babaee M., Jonoobi M., Hamzeh Y., Ashori A. Biodegradability and Mechanical Properties of Reinforced Starch Nanocomposites Using Cellulose Nanofibers. Carbohydr. Polym. 2015;132:1–8. doi: 10.1016/j.carbpol.2015.06.043. PubMed DOI
Wang J., Cheng F., Zhu P. Structure and Properties of Urea-Plasticized Starch Films with Different Urea Contents. Carbohydr. Polym. 2014;101:1109–1115. doi: 10.1016/j.carbpol.2013.10.050. PubMed DOI
Shin B.-Y., Lee S.-I., Shin Y.-S., Balakrishnan S., Narayan R. Rheological, Mechanical and Biodegradation Studies on Blends of Thermoplastic Starch and Polycaprolactone. Polym. Eng. Sci. 2004;44:1429–1438. doi: 10.1002/pen.20139. DOI
Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI
Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled With Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI
Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites With Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI
Kaseem M., Hamad K., Deri F. Thermoplastic Starch Blends: A Review of Recent Works. Polym. Sci. Ser. A. 2012;54:165–176. doi: 10.1134/S0965545X1202006X. DOI
Mina Hernandez J.H. Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS) Polymers. 2020;13:38. doi: 10.3390/polym13010038. PubMed DOI PMC
Labus K., Trusek-Holownia A., Semba D., Ostrowska J., Tynski P., Bogusz J. Biodegradable Polylactide and Thermoplastic Starch Blends as Drug Release Device—Mass Transfer Study. Pol. J. Chem. Technol. 2018;20:75–80. doi: 10.2478/pjct-2018-0011. DOI
Martin O., Avérous L. Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer. 2001;42:6209–6219. doi: 10.1016/S0032-3861(01)00086-6. DOI
Sarazin P., Li G., Orts W.J., Favis B.D. Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch. Polymer. 2008;49:599–609. doi: 10.1016/j.polymer.2007.11.029. DOI
Bou-Francis A., Piercey M., Al-Qatami O., Mazzanti G., Khattab R., Ghanem A. Polycaprolactone Blends for Fracture Fixation in Low Load-bearing Applications. J. Appl. Polym. Sci. 2020;137:48940. doi: 10.1002/app.48940. DOI
Mano J.F., Niarova D.K. Thermal Properties of Thermoplastic Starch/Synthetic Polymer Blends with Potential Biomedical Applicability. J. Mater. Sci. Mater. Med. 2003;14:127–135. doi: 10.1023/A:1022015712170. PubMed DOI
Russo M.A.L., O’Sullivan C., Rounsefell B., Halley P.J., Truss R., Clarke W.P. The Anaerobic Degradability of Thermoplastic Starch: Polyvinyl Alcohol Blends: Potential Biodegradable Food Packaging Materials. Bioresour. Technol. 2009;100:1705–1710. doi: 10.1016/j.biortech.2008.09.026. PubMed DOI
Bastioli C., Bellotti V., Giudice L., Gilli G. Mater-Bi: Properties and Biodegradability. J. Environ. Polym. Degrad. 1993;1:181–191. doi: 10.1007/BF01458026. DOI
Bastioli C. Properties and Applications of Mater-Bi Starch-Based Materials. Polym. Degrad. Stab. 1998;59:263–272. doi: 10.1016/S0141-3910(97)00156-0. DOI
Lörcks J. Properties and Applications of Compostable Starch-Based Plastic Material. Polym. Degrad. Stab. 1998;59:245–249. doi: 10.1016/S0141-3910(97)00168-7. DOI
Quiles-Carrillo L., Montanes N., Pineiro F., Jorda-Vilaplana A., Torres-Giner S. Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-Caprolactone) and Thermoplastic Starch. Materials. 2018;11:2138. doi: 10.3390/ma11112138. PubMed DOI PMC
Guarás M.P., Alvarez V.A., Ludueña L.N. Processing and Characterization of Thermoplastic Starch/Polycaprolactone/Compatibilizer Ternary Blends for Packaging Applications. J. Polym. Res. 2015;22:165. doi: 10.1007/s10965-015-0817-0. DOI
Diaz C.A., Shah R.K., Evans T., Trabold T.A., Draper K. Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies. 2020;13:6034. doi: 10.3390/en13226034. DOI
Gheorghita R., Anchidin-Norocel L., Filip R., Dimian M., Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers. 2021;13:2729. doi: 10.3390/polym13162729. PubMed DOI PMC
Balmayor E.R., Tuzlakoglu K., Azevedo H.S., Reis R.L. Preparation and Characterization of Starch-Poly-ε-Caprolactone Microparticles Incorporating Bioactive Agents for Drug Delivery and Tissue Engineering Applications. Acta Biomater. 2009;5:1035–1045. doi: 10.1016/j.actbio.2008.11.006. PubMed DOI
Masters E.A., Trombetta R.P., de Mesy Bentley K.L., Boyce B.F., Gill A.L., Gill S.R., Nishitani K., Ishikawa M., Morita Y., Ito H., et al. Evolving Concepts in Bone Infection: Redefining “Biofilm”, “Acute vs. Chronic Osteomyelitis”, “the Immune Proteome” and “Local Antibiotic Therapy”. Bone Res. 2019;7:20. doi: 10.1038/s41413-019-0061-z. PubMed DOI PMC
Slouf M., Krulis Z., Ostafinska A., Nevoralova M., Krejcikova S. Polymerní Termoplastická Biodegradovatelná Kompozice Pro Výrobu Vložek k Léčení a Prevenci Lokálních Infektů a Způsob Její Přípravy. Czech Patent CZ 307056. 2017 November 8;
Fortelný I., Šlouf M., Sikora A., Hlavatá D., Hašová V., Mikešová J., Jacob C. The Effect of the Architecture and Concentration of Styrene–Butadiene Compatibilizers on the Morphology of Polystyrene/Low-Density Polyethylene Blends. J. Appl. Polym. Sci. 2006;100:2803–2816. doi: 10.1002/app.23731. DOI
Kalasova D., Zikmund T., Pina L., Takeda Y., Horvath M., Omote K., Kaiser J. Characterization of a Laboratory-Based X-Ray Computed Nanotomography System for Propagation-Based Method of Phase Contrast Imaging. IEEE Trans. Instrum. Meas. 2020;69:1170–1178. doi: 10.1109/TIM.2019.2910338. DOI
Lifton J.J., Liu T. Evaluation of the Standard Measurement Uncertainty Due to the ISO50 Surface Determination Method for Dimensional Computed Tomography. Precis. Eng. 2020;61:82–92. doi: 10.1016/j.precisioneng.2019.10.004. DOI
Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC
Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and Micromechanical Properties of Polymers with Reduced Density of Entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI
Samara E., Moriarty T.F., Decosterd L.A., Richards R.G., Gautier E., Wahl P. Antibiotic Stability over Six Weeks in Aqueous Solution at Body Temperature with and without Heat Treatment That Mimics the Curing of Bone Cement. Bone Jt. Res. 2017;6:296–306. doi: 10.1302/2046-3758.65.BJR-2017-0276.R1. PubMed DOI PMC
Carli A.V., Sethuraman A.S., Bhimani S.J., Ross F.P., Bostrom M.P.G. Selected Heat-Sensitive Antibiotics Are Not Inactivated During Polymethylmethacrylate Curing and Can Be Used in Cement Spacers for Periprosthetic Joint Infection. J. Arthroplasty. 2018;33:1930–1935. doi: 10.1016/j.arth.2018.01.034. PubMed DOI
Traub W.H., Leonhard B. Heat Stability of the Antimicrobial Activity of Sixty-Two Antibacterial Agents. J. Antimicrob. Chemother. 1995;35:149–154. doi: 10.1093/jac/35.1.149. PubMed DOI
Dwivedi C., Pandey H., Pandey A., Ramteke P. Fabrication and Assessment of Gentamicin Loaded Electrospun Nanofibrous Scaffolds as a Quick Wound Healing Dressing Material. Curr. Nanosci. 2015;11:222–228. doi: 10.2174/1573413710666141003221954. DOI
Isaev A.I. Encyclopedia of Polymer Blends. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2011.
Mezger T.G. The Rheology Handbook. 4th ed. Vincentz Network; Hanover, Germany: 2014.
Šlouf M., Kolařík J., Kotek J. Rubber-Toughened Polypropylene/Acrylonitrile-Co-Butadiene-Co-Styrene Blends: Morphology and Mechanical Properties. Polym. Eng. Sci. 2007;47:582–592. doi: 10.1002/pen.20727. DOI
Vacková T., Slouf M., Nevoralová M., Kaprálková L. HDPE/COC Blends with Fibrous Morphology and Their Properties. Eur. Polym. J. 2012;48:2031–2039. doi: 10.1016/j.eurpolymj.2012.09.005. DOI
Ostafinska A., Vackova T., Slouf M. Strong Synergistic Improvement of Mechanical Properties in HDPE/COC Blends with Fibrillar Morphology. Polym. Eng. Sci. 2018;58:1955–1964. doi: 10.1002/pen.24805. DOI
Paul D.R., Barlow J.W. Polymer Blends. J. Macromol. Sci. Part C. 1980;18:109–168. doi: 10.1080/00222358008080917. DOI
Oliver W.C., Pharr G.M. Nanoindentation in Materials Research: Past, Present, and Future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI
Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. Wiley; Chichester, UK: 2004.
Baltá Calleja F.J., Fakirov S. Microhardness of Polymers. 1st ed. Cambridge University Press; Cambridge, UK: 2000.
Slouf M., Pavlova E., Krejcikova S., Ostafinska A., Zhigunov A., Krzyzanek V., Sowinski P., Piorkowska E. Relations between Morphology and Micromechanical Properties of Alpha, Beta and Gamma Phases of IPP. Polym. Test. 2018;67:522–532. doi: 10.1016/j.polymertesting.2018.03.039. DOI
Nielsen L.E., Landel R.F. Mechanical Properties of Polymers and Composites. 2nd ed. M. Dekker; New York, NY, USA: 1994.
Kolarik J. Simultaneous Prediction of the Modulus and Yield Strength of Binary Polymer Blends. Polym. Eng. Sci. 1996;36:2518–2524. doi: 10.1002/pen.10650. DOI
Slouf M., Ujcic A., Nevoralova M., Vackova T., Fambri L., Kelnar I. Monitoring of Morphology and Properties During Preparation of PCL/PLA Microfibrillar Composites With Organophilic Montmorillonite. Front. Mater. 2020;7:188. doi: 10.3389/fmats.2020.00188. DOI
Tabor D. The Hardness of Metals. Oxford University Press; Oxford, UK: 1951. Oxford Classic Texts in the Physical Sciences.
Pegoretti A., Kolarík J., Fambri L., Penati A. Polypropylene/Cycloolefin Copolymer Blends: Effects of Fibrous Phase Structure on Tensile Mechanical Properties. Polymer. 2003;44:3381–3387. doi: 10.1016/S0032-3861(03)00248-9. DOI
Averous L. Properties of Thermoplastic Blends: Starch–Polycaprolactone. Polymer. 2000;41:4157–4167. doi: 10.1016/S0032-3861(99)00636-9. DOI
Li G., Favis B.D. Morphology Development and Interfacial Interactions in Polycaprolactone/Thermoplastic-Starch Blends: Morphology Development and Interfacial Interactions. Macromol. Chem. Phys. 2010;211:321–333. doi: 10.1002/macp.200900348. DOI
Herrmann K., editor. Hardness Testing: Principles and Applications. ASM International; Russell, OH, USA: 2011.
Mahieu A., Terrié C., Agoulon A., Leblanc N., Youssef B. Thermoplastic Starch and Poly(ε-Caprolactone) Blends: Morphology and Mechanical Properties as a Function of Relative Humidity. J. Polym. Res. 2013;20:229. doi: 10.1007/s10965-013-0229-y. DOI
Ali Akbari Ghavimi S., Ebrahimzadeh M.H., Solati-Hashjin M., Abu Osman N.A. Polycaprolactone/Starch Composite: Fabrication, Structure, Properties, and Applications. J. Biomed. Mater. Res. 2015;103:2482–2498. doi: 10.1002/jbm.a.35371. PubMed DOI
Labet M., Thielemans W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009;38:3484. doi: 10.1039/b820162p. PubMed DOI
Leja K., Lewandowicz G. Polymer Biodegradation and Biodegradable Polymers—A Review. Pol. J. Environ. Stud. 2010;19:255–266.
Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties