Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics

. 2022 Jan 30 ; 15 (3) : . [epub] 20220130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35161043

Grantová podpora
TN01000008 Technology Agency of the Czech Republic
NU21-06-00084 Czech Health Research Council
19-04925S Czech Science Foundation
LM2018110 Ministry of Youth, Health and Sports of the Czech Republic

We report a reproducible preparation and characterization of highly homogeneous thermoplastic starch/pol(ε-caprolactone) blends (TPS/PCL) with a minimal thermomechanical degradation and co-continuous morphology. These materials would be suitable for biomedical applications, specifically for the local release of antibiotics (ATB) from the TPS phase. The TPS/PCL blends were prepared in the whole concentration range. In agreement with theoretical predictions based on component viscosities, the co-continuous morphology was found for TPS/PCL blends with a composition of 70/30 wt.%. The minimal thermomechanical degradation of the blends was achieved by an optimization of the processing conditions and by keeping processing temperatures as low as possible, because higher temperatures might damage ATB in the final application. The blends' homogeneity was verified by scanning electron microscopy. The co-continuous morphology was confirmed by submicron-computed tomography. The mechanical performance of the blends was characterized in both microscale (by an instrumented microindentation hardness testing; MHI) and macroscale (by dynamic thermomechanical analysis; DMTA). The elastic moduli of TPS increased ca four times in the TPS/PCL (70/30) blend. The correlations between elastic moduli measured by MHI and DMTA were very strong, which implied that, in the future studies, it would be possible to use just micromechanical testing that does not require large specimens.

Zobrazit více v PubMed

Luckachan G.E., Pillai C.K.S. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011;19:637–676. doi: 10.1007/s10924-011-0317-1. DOI

Colnik M., Knez-Hrncic M., Skerget M., Knez Z. Biodegradable Polymers, Current Trends of Research and Their Applications, a Review. Chem. Ind. Chem. Eng. Q. 2020;26:401–418. doi: 10.2298/CICEQ191210018C. DOI

European Bioplastics. [(accessed on 20 December 2021)]. Available online: https://www.european-bioplastics.org/bioplastics/materials/

Mohammadi Nafchi A., Moradpour M., Saeidi M., Alias A.K. Thermoplastic Starches: Properties, Challenges, and Prospects. Starch/Stärke. 2013;65:61–72. doi: 10.1002/star.201200201. DOI

Liu H., Xie F., Yu L., Chen L., Li L. Thermal Processing of Starch-Based Polymers. Prog. Polym. Sci. 2009;34:1348–1368. doi: 10.1016/j.progpolymsci.2009.07.001. DOI

Huneault M.A., Li H. Preparation and Properties of Extruded Thermoplastic Starch/Polymer Blends. J. Appl. Polym. Sci. 2012;126:E96–E108. doi: 10.1002/app.36724. DOI

Ren J., Fu H., Ren T., Yuan W. Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate) Carbohydr. Polym. 2009;77:576–582. doi: 10.1016/j.carbpol.2009.01.024. DOI

Rodriguez-Gonzalez F.J., Ramsay B.A., Favis B.D. Rheological and Thermal Properties of Thermoplastic Starch with High Glycerol Content. Carbohydr. Polym. 2004;58:139–147. doi: 10.1016/j.carbpol.2004.06.002. DOI

Bootklad M., Kaewtatip K. Biodegradation of Thermoplastic Starch/Eggshell Powder Composites. Carbohydr. Polym. 2013;97:315–320. doi: 10.1016/j.carbpol.2013.05.030. PubMed DOI

Matzinos P., Tserki V., Kontoyiannis A., Panayiotou C. Processing and Characterization of Starch/Polycaprolactone Products. Polym. Degrad. Stab. 2002;77:17–24. doi: 10.1016/S0141-3910(02)00072-1. DOI

Van Der Burgt M.C., Van Der Woude M.E., Janssen L.P.B.M. The Influence of Plasticizer on Extruded Thermoplastic Starch. J. Vinyl Addit. Technol. 1996;2:170–174. doi: 10.1002/vnl.10116. DOI

Ivanič F., Jochec-Mošková D., Janigová I., Chodák I. Physical Properties of Starch Plasticized by a Mixture of Plasticizers. Eur. Polym. J. 2017;93:843–849. doi: 10.1016/j.eurpolymj.2017.04.006. DOI

Babaee M., Jonoobi M., Hamzeh Y., Ashori A. Biodegradability and Mechanical Properties of Reinforced Starch Nanocomposites Using Cellulose Nanofibers. Carbohydr. Polym. 2015;132:1–8. doi: 10.1016/j.carbpol.2015.06.043. PubMed DOI

Wang J., Cheng F., Zhu P. Structure and Properties of Urea-Plasticized Starch Films with Different Urea Contents. Carbohydr. Polym. 2014;101:1109–1115. doi: 10.1016/j.carbpol.2013.10.050. PubMed DOI

Shin B.-Y., Lee S.-I., Shin Y.-S., Balakrishnan S., Narayan R. Rheological, Mechanical and Biodegradation Studies on Blends of Thermoplastic Starch and Polycaprolactone. Polym. Eng. Sci. 2004;44:1429–1438. doi: 10.1002/pen.20139. DOI

Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI

Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled With Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI

Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites With Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI

Kaseem M., Hamad K., Deri F. Thermoplastic Starch Blends: A Review of Recent Works. Polym. Sci. Ser. A. 2012;54:165–176. doi: 10.1134/S0965545X1202006X. DOI

Mina Hernandez J.H. Effect of the Incorporation of Polycaprolactone (PCL) on the Retrogradation of Binary Blends with Cassava Thermoplastic Starch (TPS) Polymers. 2020;13:38. doi: 10.3390/polym13010038. PubMed DOI PMC

Labus K., Trusek-Holownia A., Semba D., Ostrowska J., Tynski P., Bogusz J. Biodegradable Polylactide and Thermoplastic Starch Blends as Drug Release Device—Mass Transfer Study. Pol. J. Chem. Technol. 2018;20:75–80. doi: 10.2478/pjct-2018-0011. DOI

Martin O., Avérous L. Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer. 2001;42:6209–6219. doi: 10.1016/S0032-3861(01)00086-6. DOI

Sarazin P., Li G., Orts W.J., Favis B.D. Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch. Polymer. 2008;49:599–609. doi: 10.1016/j.polymer.2007.11.029. DOI

Bou-Francis A., Piercey M., Al-Qatami O., Mazzanti G., Khattab R., Ghanem A. Polycaprolactone Blends for Fracture Fixation in Low Load-bearing Applications. J. Appl. Polym. Sci. 2020;137:48940. doi: 10.1002/app.48940. DOI

Mano J.F., Niarova D.K. Thermal Properties of Thermoplastic Starch/Synthetic Polymer Blends with Potential Biomedical Applicability. J. Mater. Sci. Mater. Med. 2003;14:127–135. doi: 10.1023/A:1022015712170. PubMed DOI

Russo M.A.L., O’Sullivan C., Rounsefell B., Halley P.J., Truss R., Clarke W.P. The Anaerobic Degradability of Thermoplastic Starch: Polyvinyl Alcohol Blends: Potential Biodegradable Food Packaging Materials. Bioresour. Technol. 2009;100:1705–1710. doi: 10.1016/j.biortech.2008.09.026. PubMed DOI

Bastioli C., Bellotti V., Giudice L., Gilli G. Mater-Bi: Properties and Biodegradability. J. Environ. Polym. Degrad. 1993;1:181–191. doi: 10.1007/BF01458026. DOI

Bastioli C. Properties and Applications of Mater-Bi Starch-Based Materials. Polym. Degrad. Stab. 1998;59:263–272. doi: 10.1016/S0141-3910(97)00156-0. DOI

Lörcks J. Properties and Applications of Compostable Starch-Based Plastic Material. Polym. Degrad. Stab. 1998;59:245–249. doi: 10.1016/S0141-3910(97)00168-7. DOI

Quiles-Carrillo L., Montanes N., Pineiro F., Jorda-Vilaplana A., Torres-Giner S. Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-Caprolactone) and Thermoplastic Starch. Materials. 2018;11:2138. doi: 10.3390/ma11112138. PubMed DOI PMC

Guarás M.P., Alvarez V.A., Ludueña L.N. Processing and Characterization of Thermoplastic Starch/Polycaprolactone/Compatibilizer Ternary Blends for Packaging Applications. J. Polym. Res. 2015;22:165. doi: 10.1007/s10965-015-0817-0. DOI

Diaz C.A., Shah R.K., Evans T., Trabold T.A., Draper K. Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies. 2020;13:6034. doi: 10.3390/en13226034. DOI

Gheorghita R., Anchidin-Norocel L., Filip R., Dimian M., Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers. 2021;13:2729. doi: 10.3390/polym13162729. PubMed DOI PMC

Balmayor E.R., Tuzlakoglu K., Azevedo H.S., Reis R.L. Preparation and Characterization of Starch-Poly-ε-Caprolactone Microparticles Incorporating Bioactive Agents for Drug Delivery and Tissue Engineering Applications. Acta Biomater. 2009;5:1035–1045. doi: 10.1016/j.actbio.2008.11.006. PubMed DOI

Masters E.A., Trombetta R.P., de Mesy Bentley K.L., Boyce B.F., Gill A.L., Gill S.R., Nishitani K., Ishikawa M., Morita Y., Ito H., et al. Evolving Concepts in Bone Infection: Redefining “Biofilm”, “Acute vs. Chronic Osteomyelitis”, “the Immune Proteome” and “Local Antibiotic Therapy”. Bone Res. 2019;7:20. doi: 10.1038/s41413-019-0061-z. PubMed DOI PMC

Slouf M., Krulis Z., Ostafinska A., Nevoralova M., Krejcikova S. Polymerní Termoplastická Biodegradovatelná Kompozice Pro Výrobu Vložek k Léčení a Prevenci Lokálních Infektů a Způsob Její Přípravy. Czech Patent CZ 307056. 2017 November 8;

Fortelný I., Šlouf M., Sikora A., Hlavatá D., Hašová V., Mikešová J., Jacob C. The Effect of the Architecture and Concentration of Styrene–Butadiene Compatibilizers on the Morphology of Polystyrene/Low-Density Polyethylene Blends. J. Appl. Polym. Sci. 2006;100:2803–2816. doi: 10.1002/app.23731. DOI

Kalasova D., Zikmund T., Pina L., Takeda Y., Horvath M., Omote K., Kaiser J. Characterization of a Laboratory-Based X-Ray Computed Nanotomography System for Propagation-Based Method of Phase Contrast Imaging. IEEE Trans. Instrum. Meas. 2020;69:1170–1178. doi: 10.1109/TIM.2019.2910338. DOI

Lifton J.J., Liu T. Evaluation of the Standard Measurement Uncertainty Due to the ISO50 Surface Determination Method for Dimensional Computed Tomography. Precis. Eng. 2020;61:82–92. doi: 10.1016/j.precisioneng.2019.10.004. DOI

Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties. Polymers. 2020;12:2951. doi: 10.3390/polym12122951. PubMed DOI PMC

Slouf M., Krajenta J., Gajdosova V., Pawlak A. Macromechanical and Micromechanical Properties of Polymers with Reduced Density of Entanglements. Polym. Eng. Sci. 2021;61:1773–1790. doi: 10.1002/pen.25699. DOI

Samara E., Moriarty T.F., Decosterd L.A., Richards R.G., Gautier E., Wahl P. Antibiotic Stability over Six Weeks in Aqueous Solution at Body Temperature with and without Heat Treatment That Mimics the Curing of Bone Cement. Bone Jt. Res. 2017;6:296–306. doi: 10.1302/2046-3758.65.BJR-2017-0276.R1. PubMed DOI PMC

Carli A.V., Sethuraman A.S., Bhimani S.J., Ross F.P., Bostrom M.P.G. Selected Heat-Sensitive Antibiotics Are Not Inactivated During Polymethylmethacrylate Curing and Can Be Used in Cement Spacers for Periprosthetic Joint Infection. J. Arthroplasty. 2018;33:1930–1935. doi: 10.1016/j.arth.2018.01.034. PubMed DOI

Traub W.H., Leonhard B. Heat Stability of the Antimicrobial Activity of Sixty-Two Antibacterial Agents. J. Antimicrob. Chemother. 1995;35:149–154. doi: 10.1093/jac/35.1.149. PubMed DOI

Dwivedi C., Pandey H., Pandey A., Ramteke P. Fabrication and Assessment of Gentamicin Loaded Electrospun Nanofibrous Scaffolds as a Quick Wound Healing Dressing Material. Curr. Nanosci. 2015;11:222–228. doi: 10.2174/1573413710666141003221954. DOI

Isaev A.I. Encyclopedia of Polymer Blends. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2011.

Mezger T.G. The Rheology Handbook. 4th ed. Vincentz Network; Hanover, Germany: 2014.

Šlouf M., Kolařík J., Kotek J. Rubber-Toughened Polypropylene/Acrylonitrile-Co-Butadiene-Co-Styrene Blends: Morphology and Mechanical Properties. Polym. Eng. Sci. 2007;47:582–592. doi: 10.1002/pen.20727. DOI

Vacková T., Slouf M., Nevoralová M., Kaprálková L. HDPE/COC Blends with Fibrous Morphology and Their Properties. Eur. Polym. J. 2012;48:2031–2039. doi: 10.1016/j.eurpolymj.2012.09.005. DOI

Ostafinska A., Vackova T., Slouf M. Strong Synergistic Improvement of Mechanical Properties in HDPE/COC Blends with Fibrillar Morphology. Polym. Eng. Sci. 2018;58:1955–1964. doi: 10.1002/pen.24805. DOI

Paul D.R., Barlow J.W. Polymer Blends. J. Macromol. Sci. Part C. 1980;18:109–168. doi: 10.1080/00222358008080917. DOI

Oliver W.C., Pharr G.M. Nanoindentation in Materials Research: Past, Present, and Future. MRS Bull. 2010;35:897–907. doi: 10.1557/mrs2010.717. DOI

Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. Wiley; Chichester, UK: 2004.

Baltá Calleja F.J., Fakirov S. Microhardness of Polymers. 1st ed. Cambridge University Press; Cambridge, UK: 2000.

Slouf M., Pavlova E., Krejcikova S., Ostafinska A., Zhigunov A., Krzyzanek V., Sowinski P., Piorkowska E. Relations between Morphology and Micromechanical Properties of Alpha, Beta and Gamma Phases of IPP. Polym. Test. 2018;67:522–532. doi: 10.1016/j.polymertesting.2018.03.039. DOI

Nielsen L.E., Landel R.F. Mechanical Properties of Polymers and Composites. 2nd ed. M. Dekker; New York, NY, USA: 1994.

Kolarik J. Simultaneous Prediction of the Modulus and Yield Strength of Binary Polymer Blends. Polym. Eng. Sci. 1996;36:2518–2524. doi: 10.1002/pen.10650. DOI

Slouf M., Ujcic A., Nevoralova M., Vackova T., Fambri L., Kelnar I. Monitoring of Morphology and Properties During Preparation of PCL/PLA Microfibrillar Composites With Organophilic Montmorillonite. Front. Mater. 2020;7:188. doi: 10.3389/fmats.2020.00188. DOI

Tabor D. The Hardness of Metals. Oxford University Press; Oxford, UK: 1951. Oxford Classic Texts in the Physical Sciences.

Pegoretti A., Kolarík J., Fambri L., Penati A. Polypropylene/Cycloolefin Copolymer Blends: Effects of Fibrous Phase Structure on Tensile Mechanical Properties. Polymer. 2003;44:3381–3387. doi: 10.1016/S0032-3861(03)00248-9. DOI

Averous L. Properties of Thermoplastic Blends: Starch–Polycaprolactone. Polymer. 2000;41:4157–4167. doi: 10.1016/S0032-3861(99)00636-9. DOI

Li G., Favis B.D. Morphology Development and Interfacial Interactions in Polycaprolactone/Thermoplastic-Starch Blends: Morphology Development and Interfacial Interactions. Macromol. Chem. Phys. 2010;211:321–333. doi: 10.1002/macp.200900348. DOI

Herrmann K., editor. Hardness Testing: Principles and Applications. ASM International; Russell, OH, USA: 2011.

Mahieu A., Terrié C., Agoulon A., Leblanc N., Youssef B. Thermoplastic Starch and Poly(ε-Caprolactone) Blends: Morphology and Mechanical Properties as a Function of Relative Humidity. J. Polym. Res. 2013;20:229. doi: 10.1007/s10965-013-0229-y. DOI

Ali Akbari Ghavimi S., Ebrahimzadeh M.H., Solati-Hashjin M., Abu Osman N.A. Polycaprolactone/Starch Composite: Fabrication, Structure, Properties, and Applications. J. Biomed. Mater. Res. 2015;103:2482–2498. doi: 10.1002/jbm.a.35371. PubMed DOI

Labet M., Thielemans W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009;38:3484. doi: 10.1039/b820162p. PubMed DOI

Leja K., Lewandowicz G. Polymer Biodegradation and Biodegradable Polymers—A Review. Pol. J. Environ. Stud. 2010;19:255–266.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...