Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties

. 2024 Nov 09 ; 17 (22) : . [epub] 20241109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39597298

Grantová podpora
TN02000020 Technology Agency of the Czech Republic

This work describes the preparation of highly homogeneous thermoplastic starches (TPS's) with the addition of 0, 5, or 10 wt.% of maltodextrin (MD) and 0 or 3 wt.% of TiO2 nanoparticles. The TPS preparation was based on a two-step preparation protocol, which consisted in solution casting (SC) followed by melt mixing (MM). Rheology measurements at the typical starch processing temperature (120 °C) demonstrated that maltodextrin acted as a lubricating agent, which decreased the viscosity of the system. Consequently, the in situ measurement during the MM confirmed that the torque moments and real processing temperatures of all TPS/MD systems decreased in comparison with the pure TPS. The detailed characterization of morphology, thermomechanical properties, and local mechanical properties revealed that the viscosity decrease was accompanied by a slight decrease in the system homogeneity. The changes in the real processing temperatures might be quite moderate (ca 2-3 °C), but maltodextrin is a cheap and easy-to-add modifier, and the milder processing conditions are advantageous for both technical applications (energy savings) and biomedical applications (beneficial for temperature-sensitive additives, such as antibiotics).

Zobrazit více v PubMed

Krejčíková S., Ostafińska A., Šlouf M. Termoplastifikovaný Škrob a Jeho Aplikace. Chem. Listy. 2018;112:531–537.

Cheng H., Chen L., McClements D.J., Yang T., Zhang Z., Ren F., Miao M., Tian Y., Jin Z. Starch-Based Biodegradable Packaging Materials: A Review of Their Preparation, Characterization and Diverse Applications in the Food Industry. Trends Food Sci. Technol. 2021;114:70–82. doi: 10.1016/j.tifs.2021.05.017. DOI

Cho H.S., Moon H.S., Kim M., Nam K., Kim J.Y. Biodegradability and Biodegradation Rate of Poly(Caprolactone)-Starch Blend and Poly(Butylene Succinate) Biodegradable Polymer under Aerobic and Anaerobic Environment. Waste Manag. 2011;31:475–480. doi: 10.1016/j.wasman.2010.10.029. PubMed DOI

Mohammadi Nafchi A., Moradpour M., Saeidi M., Alias A.K. Thermoplastic Starches: Properties, Challenges, and Prospects. Starch-Stärke. 2013;65:61–72. doi: 10.1002/star.201200201. DOI

Garcia M.A.V.T., Garcia C.F., Faraco A.A.G. Pharmaceutical and Biomedical Applications of Native and Modified Starch: A Review. Starch-Stärke. 2020;72:1900270. doi: 10.1002/star.201900270. DOI

Dome K., Podgorbunskikh E., Bychkov A., Lomovsky O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers. 2020;12:641. doi: 10.3390/polym12030641. PubMed DOI PMC

Agarwal S., Singhal S., Godiya C.B., Kumar S. Prospects and Applications of Starch Based Biopolymers. Int. J. Environ. Anal. Chem. 2023;103:6907–6926. doi: 10.1080/03067319.2021.1963717. DOI

Shi X., Zhong Q., Zhang S. Starch-Calcium Inclusion Complexes: Optimizing Transparency, Anti-Fogging, and Fluorescence in Thermoplastic Starch. Carbohydr. Polym. 2024;348:122842. doi: 10.1016/j.carbpol.2024.122842. PubMed DOI

Tesfaye T., Gibril M., Sithole B., Ramjugernath D., Chavan R., Chunilall V., Gounden N. Valorisation of Avocado Seeds: Extraction and Characterisation of Starch for Textile Applications. Clean Technol. Environ. Policy. 2018;20:2135–2154. doi: 10.1007/s10098-018-1597-0. DOI

Infante V.H.P., Calixto L.S., Campos P.M.B.G.M. Application of Tapioca and Corn Starches as an Alternative for Synthetic Polymers in Cosmetic Products. Braz. J. Pharm. Sci. 2024;60:e20124. doi: 10.1590/s2175-97902024e20124. DOI

Nallasamy P., Ramalingam T., Nooruddin T., Shanmuganathan R., Arivalagan P., Natarajan S. Polyherbal Drug Loaded Starch Nanoparticles as Promising Drug Delivery System: Antimicrobial, Antibiofilm and Neuroprotective Studies. Process Biochem. 2020;92:355–364. doi: 10.1016/j.procbio.2020.01.026. DOI

Sivamaruthi B.S., Nallasamy P.K., Suganthy N., Kesika P., Chaiyasut C. Pharmaceutical and Biomedical Applications of Starch-Based Drug Delivery System: A Review. J. Drug Deliv. Sci. Technol. 2022;77:103890. doi: 10.1016/j.jddst.2022.103890. DOI

Abd El-Ghany N.A., Abdel Aziz M.S.A., Abdel-Aziz M.M., Mahmoud Z. Antimicrobial and Swelling Behaviors of Novel Biodegradable Corn Starch Grafted/Poly(4-Acrylamidobenzoic Acid) Copolymers. Int. J. Biol. Macromol. 2019;134:912–920. doi: 10.1016/j.ijbiomac.2019.05.078. PubMed DOI

Alp E., Damkaci F., Guven E., Tenniswood M. Starch Nanoparticles for Delivery of the Histone Deacetylase Inhibitor CG-1521 in Breast Cancer Treatment. Int. J. Nanomed. 2019;14:1335–1346. doi: 10.2147/IJN.S191837. PubMed DOI PMC

Whulanza Y., Taufiqurrakhman M., Supriadi S., Chalid M., Kreshanti P., Azadi A. PLA-Sago Starch Implants: The Optimization of Injection Molding Parameter and Plasticizer Material Compositions. Appl. Sci. 2024;14:1683. doi: 10.3390/app14051683. DOI

Huang Z.-F., Zhang X.-Q., Zhang X.-Y., Yang B., Wang K., Wang S.-Q., Yuan J.-Y., Tao L., Wei Y. Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. J. Nanosci. Nanotechnol. 2018;18:2345–2351. doi: 10.1166/jnn.2018.14287. PubMed DOI

Shi Y., Xu D., Liu M., Fu L., Wan Q., Mao L., Dai Y., Wen Y., Zhang X., Wei Y. Room Temperature Preparation of Fluorescent Starch Nanoparticles from Starch-Dopamine Conjugates and Their Biological Applications. Mater. Sci. Eng. C. 2018;82:204–209. doi: 10.1016/j.msec.2017.08.070. PubMed DOI

Montilla-Buitrago C.E., Gómez-López R.A., Solanilla-Duque J.F., Serna-Cock L., Villada-Castillo H.S. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review. Starch-Stärke. 2021;73:2100060. doi: 10.1002/star.202100060. DOI

Da Róz A.L., Carvalho A.J.F.D., Gandini A., Curvelo A.A.D.S. The Effect of Plasticizers on Thermoplastic Starch Compositions Obtained by Melt Processing. Carbohydr. Polym. 2006;63:417–424. doi: 10.1016/j.carbpol.2005.09.017. DOI

Bangar S.P., Whiteside W.S., Ashogbon A.O., Kumar M. Recent Advances in Thermoplastic Starches for Food Packaging: A Review. Food Packag. Shelf Life. 2021;30:100743. doi: 10.1016/j.fpsl.2021.100743. DOI

Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC

Taghizadeh A., Sarazin P., Favis B.D. High Molecular Weight Plasticizers in Thermoplastic Starch/Polyethylene Blends. J. Mater. Sci. 2013;48:1799–1811. doi: 10.1007/s10853-012-6943-8. DOI

Battegazzore D., Bocchini S., Nicola G., Martini E., Frache A. Isosorbide, a Green Plasticizer for Thermoplastic Starch That Does Not Retrogradate. Carbohydr. Polym. 2015;119:78–84. doi: 10.1016/j.carbpol.2014.11.030. PubMed DOI

Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules. 2002;3:1101–1108. doi: 10.1021/bm020065p. PubMed DOI

Teixeira E.D.M., Da Róz A.L., Carvalho A.J.F.D., Curvelo A.A.D.S. The Effect of Glycerol/Sugar/Water and Sugar/Water Mixtures on the Plasticization of Thermoplastic Cassava Starch. Carbohydr. Polym. 2007;69:619–624. doi: 10.1016/j.carbpol.2007.01.022. DOI

Gao W., Liu P., Li X., Qiu L., Hou H., Cui B. The Co-Plasticization Effects of Glycerol and Small Molecular Sugars on Starch-Based Nanocomposite Films Prepared by Extrusion Blowing. Int. J. Biol. Macromol. 2019;133:1175–1181. doi: 10.1016/j.ijbiomac.2019.04.193. PubMed DOI

Wang J., Liang Y., Zhang Z., Ye C., Chen Y., Wei P., Wang Y., Xia Y. Thermoplastic Starch Plasticized by Polymeric Ionic Liquid. Eur. Polym. J. 2021;148:110367. doi: 10.1016/j.eurpolymj.2021.110367. DOI

Van Soest J.J., Kortleve P.M. The Influence of Maltodextrins on the Structure and Properties of Compression-Molded Starch Plastic Sheets. J. Appl. Polym. Sci. 1999;74:2207–2219. doi: 10.1002/(SICI)1097-4628(19991128)74:9<2207::AID-APP10>3.0.CO;2-3. DOI

Chen Y., Wang Z., Jia L., Niu C., Hu Z., Wu C., Zhang S., Ren J., Qin G., Zhang G., et al. Effect of Functional Groups of Plasticizers on Starch Plasticization. Colloid Polym. Sci. 2024;302:1323–1335. doi: 10.1007/s00396-024-05272-9. DOI

Niazi M.B.K., Zijlstra M., Broekhuis A.A. Spray Drying Thermoplastic Starch Formulations: Need for Processing Aids and Plasticizers? Eur. Polymer. J. 2013;49:1861–1870. doi: 10.1016/j.eurpolymj.2013.04.016. DOI

Nevoralová M., Koutný M., Ujčić A., Horák P., Kredatusová J., Šerá J., Růžek L., Růžková M., Krejčíková S., Šlouf M., et al. Controlled Biodegradability of Functionalized Thermoplastic Starch Based Materials. Polym. Degrad. Stab. 2019;170:108995. doi: 10.1016/j.polymdegradstab.2019.108995. DOI

Smits A.L.M., Kruiskamp P.H., van Soest J.J.G., Vliegenthart J.F.G. The Influence of Various Small Plasticisers and Malto-Oligosaccharides on the Retrogradation of (Partly) Gelatinised Starch. Carbohydr. Polym. 2003;51:417–424. doi: 10.1016/S0144-8617(02)00206-0. DOI

Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI

Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI

Štícha R., Fulín P., Nyč O., Gajdošová V., Pokorný D., Šlouf M. Antimicrobial Activity of the Most Common Antibiotic-Releasing Systems Employed in Current Orthopedic Surgery: In Vitro Study. Acta Chir. Orthop. Traumatol. Cechoslov. 2023;90:188–197. doi: 10.55095/achot2023/027. PubMed DOI

Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI

Wojdyr M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010;43:1126–1128. doi: 10.1107/S0021889810030499. DOI

Ocelić Bulatović V., Mandić L., Turković A., Kučić Grgić D., Jozinović A., Zovko R., Govorčin Bajsić E. Environmentally Friendly Packaging Materials Based on Thermoplastic Starch. Chem. Biochem. Eng. Q. 2019;33:347–361. doi: 10.15255/CABEQ.2018.1548. DOI

Ghanbari A., Tabarsa T., Ashori A., Shakeri A., Mashkour M. Preparation and Characterization of Thermoplastic Starch and Cellulose Nanofibers as Green Nanocomposites: Extrusion Processing. Int. J. Biol. Macromol. 2018;112:442–447. doi: 10.1016/j.ijbiomac.2018.02.007. PubMed DOI

Son D., Lee J., Kim S.K., Hong J., Jung H., Shim J.K., Kang D. Effect of Cellulose Nanofiber-Montmorillonite Hybrid Filler on the Melt Blending of Thermoplastic Starch Composites. Int. J. Biol. Macromol. 2024;254:127236. doi: 10.1016/j.ijbiomac.2023.127236. PubMed DOI

Slouf M., Lednicky F., Wandrol P., Vackova T. Polymer surface morphology: Characterization by electron microscopies. In: Sabbatini L., editor. Polymer Surface Characterization. Walter de Gruyter; Berlin, Germany: 2022. pp. 169–205.

van Soest J.J., Vliegenthart J.F. Crystallinity in Starch Plastics: Consequences for Material Properties. Trends Biotechnol. 1997;15:208–213. doi: 10.1016/S0167-7799(97)01021-4. PubMed DOI

Zhang B., Li X., Liu J., Xie F., Chen L. Supramolecular Structure of A- and B-Type Granules of Wheat Starch. Food Hydrocoll. 2013;31:68–73. doi: 10.1016/j.foodhyd.2012.10.006. DOI

Gamarano D.D.S., Pereira I.M., Da Silva M.C., Mottin A.C., Ayres E. Crystal Structure Transformations in Extruded Starch Plasticized with Glycerol and Urea. Polym. Bull. 2020;77:4971–4992. doi: 10.1007/s00289-019-02999-2. DOI

Castillo L.A., López O.V., García M.A., Barbosa S.E., Villar M.A. Crystalline Morphology of Thermoplastic Starch/Talc Nanocomposites Induced by Thermal Processing. Heliyon. 2019;5:e01877. doi: 10.1016/j.heliyon.2019.e01877. PubMed DOI PMC

Slouf M., Mikesova J., Fencl J., Stara H., Baldrian J., Horak Z. Impact of Dose-Rate on Rheology, Structure and Wear of Irradiated UHMWPE. J. Macromol. Sci. Part B. 2009;48:587–603. doi: 10.1080/00222340902837824. DOI

Matějka L., Janata M., Pleštil J., Zhigunov A., Šlouf M. Self-Assembly of POSS-Containing Block Copolymers: Fixing the Hierarchical Structure in Networks. Polymer. 2014;55:126–136. doi: 10.1016/j.polymer.2013.11.026. DOI

Viguié J., Molina-Boisseau S., Dufresne A. Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromol. Biosci. 2007;7:1206–1216. doi: 10.1002/mabi.200700136. PubMed DOI

Sessini V., Raquez J., Lourdin D., Maigret J., Kenny J.M., Dubois P., Peponi L. Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromol. Chem. Phys. 2017;218:1700388. doi: 10.1002/macp.201700388. DOI

Shi R., Liu Q., Ding T., Han Y., Zhang L., Chen D., Tian W. Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci. 2007;103:574–586. doi: 10.1002/app.25193. DOI

Angellier H., Molina-Boisseau S., Dole P., Dufresne A. Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules. 2006;7:531–539. doi: 10.1021/bm050797s. PubMed DOI

Lendvai L., Karger-Kocsis J., Kmetty Á., Drakopoulos S.X. Production and Characterization of Microfibrillated Cellulose-reinforced Thermoplastic Starch Composites. J. Appl. Polym. Sci. 2016;133:42397. doi: 10.1002/app.42397. DOI

Sessini V., Arrieta M.P., Fernández-Torres A., Peponi L. Humidity-Activated Shape Memory Effect on Plasticized Starch-Based Biomaterials. Carbohydr. Polym. 2018;179:93–99. doi: 10.1016/j.carbpol.2017.09.070. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Schlüter B.A., Rosano M.B. A Holistic Approach to Energy Efficiency Assessment in Plastic Processing. J. Clean. Prod. 2016;118:19–28. doi: 10.1016/j.jclepro.2016.01.037. DOI

Abeykoon C., McMillan A., Nguyen B.K. Energy Efficiency in Extrusion-Related Polymer Processing: A Review of State of the Art and Potential Efficiency Improvements. Renew. Sustain. Energy Rev. 2021;147:111219. doi: 10.1016/j.rser.2021.111219. DOI

Chronakis I.S. On the Molecular Characteristics, Compositional Properties, and Structural-Functional Mechanisms of Maltodextrins: A Review. Crit. Rev. Food Sci. Nutr. 1998;38:599–637. doi: 10.1080/10408699891274327. PubMed DOI

Juszczak L., Gałkowska D., Witczak T., Fortuna T. Effect of Maltodextrins on the Rheological Properties of Potato Starch Pastes and Gels. Int. J. Food Sci. 2013;2013:869362. doi: 10.1155/2013/869362. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...