Thermoplastic Starch with Maltodextrin: Preparation, Morphology, Rheology, and Mechanical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000020
Technology Agency of the Czech Republic
PubMed
39597298
PubMed Central
PMC11596022
DOI
10.3390/ma17225474
PII: ma17225474
Knihovny.cz E-zdroje
- Klíčová slova
- lower processing temperature, lower viscosity, maltodextrin modification, thermoplastic starch,
- Publikační typ
- časopisecké články MeSH
This work describes the preparation of highly homogeneous thermoplastic starches (TPS's) with the addition of 0, 5, or 10 wt.% of maltodextrin (MD) and 0 or 3 wt.% of TiO2 nanoparticles. The TPS preparation was based on a two-step preparation protocol, which consisted in solution casting (SC) followed by melt mixing (MM). Rheology measurements at the typical starch processing temperature (120 °C) demonstrated that maltodextrin acted as a lubricating agent, which decreased the viscosity of the system. Consequently, the in situ measurement during the MM confirmed that the torque moments and real processing temperatures of all TPS/MD systems decreased in comparison with the pure TPS. The detailed characterization of morphology, thermomechanical properties, and local mechanical properties revealed that the viscosity decrease was accompanied by a slight decrease in the system homogeneity. The changes in the real processing temperatures might be quite moderate (ca 2-3 °C), but maltodextrin is a cheap and easy-to-add modifier, and the milder processing conditions are advantageous for both technical applications (energy savings) and biomedical applications (beneficial for temperature-sensitive additives, such as antibiotics).
Zobrazit více v PubMed
Krejčíková S., Ostafińska A., Šlouf M. Termoplastifikovaný Škrob a Jeho Aplikace. Chem. Listy. 2018;112:531–537.
Cheng H., Chen L., McClements D.J., Yang T., Zhang Z., Ren F., Miao M., Tian Y., Jin Z. Starch-Based Biodegradable Packaging Materials: A Review of Their Preparation, Characterization and Diverse Applications in the Food Industry. Trends Food Sci. Technol. 2021;114:70–82. doi: 10.1016/j.tifs.2021.05.017. DOI
Cho H.S., Moon H.S., Kim M., Nam K., Kim J.Y. Biodegradability and Biodegradation Rate of Poly(Caprolactone)-Starch Blend and Poly(Butylene Succinate) Biodegradable Polymer under Aerobic and Anaerobic Environment. Waste Manag. 2011;31:475–480. doi: 10.1016/j.wasman.2010.10.029. PubMed DOI
Mohammadi Nafchi A., Moradpour M., Saeidi M., Alias A.K. Thermoplastic Starches: Properties, Challenges, and Prospects. Starch-Stärke. 2013;65:61–72. doi: 10.1002/star.201200201. DOI
Garcia M.A.V.T., Garcia C.F., Faraco A.A.G. Pharmaceutical and Biomedical Applications of Native and Modified Starch: A Review. Starch-Stärke. 2020;72:1900270. doi: 10.1002/star.201900270. DOI
Dome K., Podgorbunskikh E., Bychkov A., Lomovsky O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers. 2020;12:641. doi: 10.3390/polym12030641. PubMed DOI PMC
Agarwal S., Singhal S., Godiya C.B., Kumar S. Prospects and Applications of Starch Based Biopolymers. Int. J. Environ. Anal. Chem. 2023;103:6907–6926. doi: 10.1080/03067319.2021.1963717. DOI
Shi X., Zhong Q., Zhang S. Starch-Calcium Inclusion Complexes: Optimizing Transparency, Anti-Fogging, and Fluorescence in Thermoplastic Starch. Carbohydr. Polym. 2024;348:122842. doi: 10.1016/j.carbpol.2024.122842. PubMed DOI
Tesfaye T., Gibril M., Sithole B., Ramjugernath D., Chavan R., Chunilall V., Gounden N. Valorisation of Avocado Seeds: Extraction and Characterisation of Starch for Textile Applications. Clean Technol. Environ. Policy. 2018;20:2135–2154. doi: 10.1007/s10098-018-1597-0. DOI
Infante V.H.P., Calixto L.S., Campos P.M.B.G.M. Application of Tapioca and Corn Starches as an Alternative for Synthetic Polymers in Cosmetic Products. Braz. J. Pharm. Sci. 2024;60:e20124. doi: 10.1590/s2175-97902024e20124. DOI
Nallasamy P., Ramalingam T., Nooruddin T., Shanmuganathan R., Arivalagan P., Natarajan S. Polyherbal Drug Loaded Starch Nanoparticles as Promising Drug Delivery System: Antimicrobial, Antibiofilm and Neuroprotective Studies. Process Biochem. 2020;92:355–364. doi: 10.1016/j.procbio.2020.01.026. DOI
Sivamaruthi B.S., Nallasamy P.K., Suganthy N., Kesika P., Chaiyasut C. Pharmaceutical and Biomedical Applications of Starch-Based Drug Delivery System: A Review. J. Drug Deliv. Sci. Technol. 2022;77:103890. doi: 10.1016/j.jddst.2022.103890. DOI
Abd El-Ghany N.A., Abdel Aziz M.S.A., Abdel-Aziz M.M., Mahmoud Z. Antimicrobial and Swelling Behaviors of Novel Biodegradable Corn Starch Grafted/Poly(4-Acrylamidobenzoic Acid) Copolymers. Int. J. Biol. Macromol. 2019;134:912–920. doi: 10.1016/j.ijbiomac.2019.05.078. PubMed DOI
Alp E., Damkaci F., Guven E., Tenniswood M. Starch Nanoparticles for Delivery of the Histone Deacetylase Inhibitor CG-1521 in Breast Cancer Treatment. Int. J. Nanomed. 2019;14:1335–1346. doi: 10.2147/IJN.S191837. PubMed DOI PMC
Whulanza Y., Taufiqurrakhman M., Supriadi S., Chalid M., Kreshanti P., Azadi A. PLA-Sago Starch Implants: The Optimization of Injection Molding Parameter and Plasticizer Material Compositions. Appl. Sci. 2024;14:1683. doi: 10.3390/app14051683. DOI
Huang Z.-F., Zhang X.-Q., Zhang X.-Y., Yang B., Wang K., Wang S.-Q., Yuan J.-Y., Tao L., Wei Y. Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. J. Nanosci. Nanotechnol. 2018;18:2345–2351. doi: 10.1166/jnn.2018.14287. PubMed DOI
Shi Y., Xu D., Liu M., Fu L., Wan Q., Mao L., Dai Y., Wen Y., Zhang X., Wei Y. Room Temperature Preparation of Fluorescent Starch Nanoparticles from Starch-Dopamine Conjugates and Their Biological Applications. Mater. Sci. Eng. C. 2018;82:204–209. doi: 10.1016/j.msec.2017.08.070. PubMed DOI
Montilla-Buitrago C.E., Gómez-López R.A., Solanilla-Duque J.F., Serna-Cock L., Villada-Castillo H.S. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review. Starch-Stärke. 2021;73:2100060. doi: 10.1002/star.202100060. DOI
Da Róz A.L., Carvalho A.J.F.D., Gandini A., Curvelo A.A.D.S. The Effect of Plasticizers on Thermoplastic Starch Compositions Obtained by Melt Processing. Carbohydr. Polym. 2006;63:417–424. doi: 10.1016/j.carbpol.2005.09.017. DOI
Bangar S.P., Whiteside W.S., Ashogbon A.O., Kumar M. Recent Advances in Thermoplastic Starches for Food Packaging: A Review. Food Packag. Shelf Life. 2021;30:100743. doi: 10.1016/j.fpsl.2021.100743. DOI
Gajdosova V., Strachota B., Strachota A., Michalkova D., Krejcikova S., Fulin P., Nyc O., Brinek A., Zemek M., Slouf M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials. 2022;15:1101. doi: 10.3390/ma15031101. PubMed DOI PMC
Taghizadeh A., Sarazin P., Favis B.D. High Molecular Weight Plasticizers in Thermoplastic Starch/Polyethylene Blends. J. Mater. Sci. 2013;48:1799–1811. doi: 10.1007/s10853-012-6943-8. DOI
Battegazzore D., Bocchini S., Nicola G., Martini E., Frache A. Isosorbide, a Green Plasticizer for Thermoplastic Starch That Does Not Retrogradate. Carbohydr. Polym. 2015;119:78–84. doi: 10.1016/j.carbpol.2014.11.030. PubMed DOI
Mathew A.P., Dufresne A. Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules. 2002;3:1101–1108. doi: 10.1021/bm020065p. PubMed DOI
Teixeira E.D.M., Da Róz A.L., Carvalho A.J.F.D., Curvelo A.A.D.S. The Effect of Glycerol/Sugar/Water and Sugar/Water Mixtures on the Plasticization of Thermoplastic Cassava Starch. Carbohydr. Polym. 2007;69:619–624. doi: 10.1016/j.carbpol.2007.01.022. DOI
Gao W., Liu P., Li X., Qiu L., Hou H., Cui B. The Co-Plasticization Effects of Glycerol and Small Molecular Sugars on Starch-Based Nanocomposite Films Prepared by Extrusion Blowing. Int. J. Biol. Macromol. 2019;133:1175–1181. doi: 10.1016/j.ijbiomac.2019.04.193. PubMed DOI
Wang J., Liang Y., Zhang Z., Ye C., Chen Y., Wei P., Wang Y., Xia Y. Thermoplastic Starch Plasticized by Polymeric Ionic Liquid. Eur. Polym. J. 2021;148:110367. doi: 10.1016/j.eurpolymj.2021.110367. DOI
Van Soest J.J., Kortleve P.M. The Influence of Maltodextrins on the Structure and Properties of Compression-Molded Starch Plastic Sheets. J. Appl. Polym. Sci. 1999;74:2207–2219. doi: 10.1002/(SICI)1097-4628(19991128)74:9<2207::AID-APP10>3.0.CO;2-3. DOI
Chen Y., Wang Z., Jia L., Niu C., Hu Z., Wu C., Zhang S., Ren J., Qin G., Zhang G., et al. Effect of Functional Groups of Plasticizers on Starch Plasticization. Colloid Polym. Sci. 2024;302:1323–1335. doi: 10.1007/s00396-024-05272-9. DOI
Niazi M.B.K., Zijlstra M., Broekhuis A.A. Spray Drying Thermoplastic Starch Formulations: Need for Processing Aids and Plasticizers? Eur. Polymer. J. 2013;49:1861–1870. doi: 10.1016/j.eurpolymj.2013.04.016. DOI
Nevoralová M., Koutný M., Ujčić A., Horák P., Kredatusová J., Šerá J., Růžek L., Růžková M., Krejčíková S., Šlouf M., et al. Controlled Biodegradability of Functionalized Thermoplastic Starch Based Materials. Polym. Degrad. Stab. 2019;170:108995. doi: 10.1016/j.polymdegradstab.2019.108995. DOI
Smits A.L.M., Kruiskamp P.H., van Soest J.J.G., Vliegenthart J.F.G. The Influence of Various Small Plasticisers and Malto-Oligosaccharides on the Retrogradation of (Partly) Gelatinised Starch. Carbohydr. Polym. 2003;51:417–424. doi: 10.1016/S0144-8617(02)00206-0. DOI
Ostafińska A., Mikešová J., Krejčíková S., Nevoralová M., Šturcová A., Zhigunov A., Michálková D., Šlouf M. Thermoplastic Starch Composites with TiO2 Particles: Preparation, Morphology, Rheology and Mechanical Properties. Int. J. Biol. Macromol. 2017;101:273–282. doi: 10.1016/j.ijbiomac.2017.03.104. PubMed DOI
Ujcic A., Krejcikova S., Nevoralova M., Zhigunov A., Dybal J., Krulis Z., Fulin P., Nyc O., Slouf M. Thermoplastic Starch Composites with Titanium Dioxide and Vancomycin Antibiotic: Preparation, Morphology, Thermomechanical Properties, and Antimicrobial Susceptibility Testing. Front. Mater. 2020;7:9. doi: 10.3389/fmats.2020.00009. DOI
Štícha R., Fulín P., Nyč O., Gajdošová V., Pokorný D., Šlouf M. Antimicrobial Activity of the Most Common Antibiotic-Releasing Systems Employed in Current Orthopedic Surgery: In Vitro Study. Acta Chir. Orthop. Traumatol. Cechoslov. 2023;90:188–197. doi: 10.55095/achot2023/027. PubMed DOI
Ujcic A., Nevoralova M., Dybal J., Zhigunov A., Kredatusova J., Krejcikova S., Fortelny I., Slouf M. Thermoplastic Starch Composites Filled with Isometric and Elongated TiO2-Based Nanoparticles. Front. Mater. 2019;6:284. doi: 10.3389/fmats.2019.00284. DOI
Wojdyr M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010;43:1126–1128. doi: 10.1107/S0021889810030499. DOI
Ocelić Bulatović V., Mandić L., Turković A., Kučić Grgić D., Jozinović A., Zovko R., Govorčin Bajsić E. Environmentally Friendly Packaging Materials Based on Thermoplastic Starch. Chem. Biochem. Eng. Q. 2019;33:347–361. doi: 10.15255/CABEQ.2018.1548. DOI
Ghanbari A., Tabarsa T., Ashori A., Shakeri A., Mashkour M. Preparation and Characterization of Thermoplastic Starch and Cellulose Nanofibers as Green Nanocomposites: Extrusion Processing. Int. J. Biol. Macromol. 2018;112:442–447. doi: 10.1016/j.ijbiomac.2018.02.007. PubMed DOI
Son D., Lee J., Kim S.K., Hong J., Jung H., Shim J.K., Kang D. Effect of Cellulose Nanofiber-Montmorillonite Hybrid Filler on the Melt Blending of Thermoplastic Starch Composites. Int. J. Biol. Macromol. 2024;254:127236. doi: 10.1016/j.ijbiomac.2023.127236. PubMed DOI
Slouf M., Lednicky F., Wandrol P., Vackova T. Polymer surface morphology: Characterization by electron microscopies. In: Sabbatini L., editor. Polymer Surface Characterization. Walter de Gruyter; Berlin, Germany: 2022. pp. 169–205.
van Soest J.J., Vliegenthart J.F. Crystallinity in Starch Plastics: Consequences for Material Properties. Trends Biotechnol. 1997;15:208–213. doi: 10.1016/S0167-7799(97)01021-4. PubMed DOI
Zhang B., Li X., Liu J., Xie F., Chen L. Supramolecular Structure of A- and B-Type Granules of Wheat Starch. Food Hydrocoll. 2013;31:68–73. doi: 10.1016/j.foodhyd.2012.10.006. DOI
Gamarano D.D.S., Pereira I.M., Da Silva M.C., Mottin A.C., Ayres E. Crystal Structure Transformations in Extruded Starch Plasticized with Glycerol and Urea. Polym. Bull. 2020;77:4971–4992. doi: 10.1007/s00289-019-02999-2. DOI
Castillo L.A., López O.V., García M.A., Barbosa S.E., Villar M.A. Crystalline Morphology of Thermoplastic Starch/Talc Nanocomposites Induced by Thermal Processing. Heliyon. 2019;5:e01877. doi: 10.1016/j.heliyon.2019.e01877. PubMed DOI PMC
Slouf M., Mikesova J., Fencl J., Stara H., Baldrian J., Horak Z. Impact of Dose-Rate on Rheology, Structure and Wear of Irradiated UHMWPE. J. Macromol. Sci. Part B. 2009;48:587–603. doi: 10.1080/00222340902837824. DOI
Matějka L., Janata M., Pleštil J., Zhigunov A., Šlouf M. Self-Assembly of POSS-Containing Block Copolymers: Fixing the Hierarchical Structure in Networks. Polymer. 2014;55:126–136. doi: 10.1016/j.polymer.2013.11.026. DOI
Viguié J., Molina-Boisseau S., Dufresne A. Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromol. Biosci. 2007;7:1206–1216. doi: 10.1002/mabi.200700136. PubMed DOI
Sessini V., Raquez J., Lourdin D., Maigret J., Kenny J.M., Dubois P., Peponi L. Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromol. Chem. Phys. 2017;218:1700388. doi: 10.1002/macp.201700388. DOI
Shi R., Liu Q., Ding T., Han Y., Zhang L., Chen D., Tian W. Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci. 2007;103:574–586. doi: 10.1002/app.25193. DOI
Angellier H., Molina-Boisseau S., Dole P., Dufresne A. Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules. 2006;7:531–539. doi: 10.1021/bm050797s. PubMed DOI
Lendvai L., Karger-Kocsis J., Kmetty Á., Drakopoulos S.X. Production and Characterization of Microfibrillated Cellulose-reinforced Thermoplastic Starch Composites. J. Appl. Polym. Sci. 2016;133:42397. doi: 10.1002/app.42397. DOI
Sessini V., Arrieta M.P., Fernández-Torres A., Peponi L. Humidity-Activated Shape Memory Effect on Plasticized Starch-Based Biomaterials. Carbohydr. Polym. 2018;179:93–99. doi: 10.1016/j.carbpol.2017.09.070. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Schlüter B.A., Rosano M.B. A Holistic Approach to Energy Efficiency Assessment in Plastic Processing. J. Clean. Prod. 2016;118:19–28. doi: 10.1016/j.jclepro.2016.01.037. DOI
Abeykoon C., McMillan A., Nguyen B.K. Energy Efficiency in Extrusion-Related Polymer Processing: A Review of State of the Art and Potential Efficiency Improvements. Renew. Sustain. Energy Rev. 2021;147:111219. doi: 10.1016/j.rser.2021.111219. DOI
Chronakis I.S. On the Molecular Characteristics, Compositional Properties, and Structural-Functional Mechanisms of Maltodextrins: A Review. Crit. Rev. Food Sci. Nutr. 1998;38:599–637. doi: 10.1080/10408699891274327. PubMed DOI
Juszczak L., Gałkowska D., Witczak T., Fortuna T. Effect of Maltodextrins on the Rheological Properties of Potato Starch Pastes and Gels. Int. J. Food Sci. 2013;2013:869362. doi: 10.1155/2013/869362. PubMed DOI PMC