A novel germline hyperactivating JAK2 mutation L604F
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37639050
PubMed Central
PMC10492870
DOI
10.1007/s00277-023-05423-y
PII: 10.1007/s00277-023-05423-y
Knihovny.cz E-zdroje
- Klíčová slova
- Germline mutation, Hereditary erythrocytosis, JAK2 F595, Polycythemia vera, STAT5,
- MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- Janus kinasa 2 genetika MeSH
- lidé MeSH
- mutace MeSH
- zárodečné buňky * MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- JAK2 protein, human MeSH Prohlížeč
- Janus kinasa 2 MeSH
Somatic JAK2 mutations are the main molecular cause of the vast majority of polycythemia vera (PV) cases. According to a recent structural model, the prevalent acquired V617F mutation improves the stability of the JAK2 dimer, thereby enhancing the constitutive JAK2 kinase activity. Germline JAK2 mutations usually do not largely alter JAK2 signaling, although they may modulate the impact of V617F. We found an unusual germline JAK2 mutation L604F in homozygous form in a young PV patient, along with a low allele burden JAK2 V617F mutation, and in her apparently healthy sister. Their father with a PV-like disease had L604F in a heterozygous state, without V617F. The functional consequences of JAK2 L604Fmutation were compared with those induced by V617F in two different in vitro model systems: (i) HEK293T cells were transfected with plasmids for exogenous JAK2-GFP expression, and (ii) endogenous JAK2 modifications were introduced into HeLa cells using CRISPR/Cas9. Both mutations significantly increased JAK2 constitutive activity in transfected HEK293T cells. In the second model, JAK2 modification resulted in reduced total JAK2 protein levels. An important difference was also detected: as described previously, the effect of V617F on JAK2 kinase activity was abrogated in the absence of the aromatic residue F595. In contrast, JAK2 hyperactivation by L604F was only partially inhibited by the F595 change to alanine. We propose that the L604F mutation increases the probability of spontaneous JAK2 dimer formation, which is physiologically mediated by F595. In addition, L604F may contribute to dimer stabilization similarly to V617F.
Clinical Department Institute of Hematology and Blood Transfusion Prague Czech Republic
Department of Genomics Institute of Hematology and Blood Transfusion Prague Czech Republic
Department of Proteomics Institute of Hematology and Blood Transfusion Prague Czech Republic
Zobrazit více v PubMed
Langabeer SE, Andrikovics H, Asp J, et al. Molecular diagnostics of myeloproliferative neoplasms. Eur J Haematol. 2015;95:270–279. doi: 10.1111/ejh.12578. PubMed DOI
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–1790. doi: 10.1056/NEJMoa051113. PubMed DOI
James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546. PubMed DOI
Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397. doi: 10.1016/j.ccr.2005.03.023. PubMed DOI
Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162–2168. doi: 10.1182/blood-2005-03-1320. PubMed DOI
Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–468. doi: 10.1056/NEJMoa065202. PubMed DOI PMC
Schnittger S, Bacher U, Haferlach C, et al. Detection of JAK2 exon 12 mutations in 15 patients with JAK2V617F negative polycythemia vera. Haematologica. 2009;94:414–418. doi: 10.3324/haematol.13223. PubMed DOI PMC
Glassman CR, Tsutsumi N, Saxton RA, Lupardus PJ, Jude KM, Garcia KC. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science. 2022;376:163–169. doi: 10.1126/science.abn8933. PubMed DOI PMC
Mullighan CG, Zhang J, Harvey RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci. 2009;106:9414–9418. doi: 10.1073/pnas.0811761106. PubMed DOI PMC
Kapralova K, Horvathova M, Pecquet C, et al. Cooperation of germ line JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood. 2016;128:1418–1423. doi: 10.1182/blood-2016-02-698951. PubMed DOI
Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN (2010) JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. PLoS One 5:e11157. 10.1371/journal.pone.0011157 PubMed PMC
Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I (2020) Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev 42:100710. 10.1016/j.blre.2020.100710 PubMed
Braunstein EM, Moliterno AR. Back to biology: new insights on inheritance in myeloproliferative disorders. Curr Hematol Malig Rep. 2014;9:311–318. doi: 10.1007/s11899-014-0232-3. PubMed DOI PMC
Mambet C, Babosova O, Defour J, et al. Cooccurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in myeloproliferative neoplasms. Blood. 2018;132:2695–2699. doi: 10.1182/blood-2018-04-843060. PubMed DOI
Lanikova L, Babosova O, Swierczek S, Wang L, Wheeler DA, Divoky V, Korinek V, Prchal JT. Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera. Blood. 2016;128:2266–2270. doi: 10.1182/blood-2016-04-711283. PubMed DOI PMC
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Gangat N, Szuber N, Pardanani A, Tefferi A. JAK2 unmutated erythrocytosis: current diagnostic approach and therapeutic views. Leukemia. 2021;35:2166–2181. doi: 10.1038/s41375-021-01290-6. PubMed DOI PMC
Camps C, Petousi N, Bento C, et al. Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations. Haematologica. 2016;101:1306–1318. doi: 10.3324/haematol.2016.144063. PubMed DOI PMC
Stockklausner C, Duffert CM, Cario H, Knöfler R, Streif W, Kulozik AE, THROMKID-Plus Studiengruppe der Gesellschaft für Thrombose- und Hämostaseforschung (GTH) and of Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH) (2021) Thrombocytosis in children and adolescents-classification, diagnostic approach, and clinical management. Ann Hematol 100:1647-1665. 10.1007/s00277-021-04485-0 PubMed PMC
Skov V. Next generation sequencing in MPNs. Lessons from the past and prospects for use as predictors of prognosis and treatment responses. Cancers (Basel) 2020;12:2194. doi: 10.3390/cancers12082194. PubMed DOI PMC
Schwarz J, Penka M, Campr V, et al. Diagnosis and treatment of BCR/ABL-negative myeloproliferative diseases – principles and rationale of CZEMP recommendations. Vnitr Lek. 2011;57:189–213. PubMed
Marková J, Průková D, Volková Z, Schwarz J. A new allelic discrimination assay using locked nucleic acid-modified nucleotides (LNA) probes for detection of JAK2 V617F mutation. Leuk Lymphoma. 2007;48:636–639. doi: 10.1080/10428190601137328. PubMed DOI
Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–972. doi: 10.1038/nature09627. PubMed DOI PMC
Kim E, Ilic N, Shrestha Y, et al. Systematic functional interrogation of rare cancer variants identifies oncogenic alleles. Cancer Discov. 2016;6:714–726. doi: 10.1158/2159-8290.CD-16-0160. PubMed DOI PMC
Gnanasambandan K, Magis A, Sayeski PP. The constitutive activation of Jak2-V617F is mediated by a π stacking mechanism involving phenylalanines 595 and 617. Biochemistry. 2010;49:9972–9984. doi: 10.1021/bi1014858. PubMed DOI PMC
Milosevic Feenstra JD, Nivarthi H, Gisslinger H, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–332. doi: 10.1182/blood-2015-07-661835. PubMed DOI PMC
Stuckey R, Gómez-Casares MT. Recent advances in the use of molecular analyses to inform the diagnosis and prognosis of patients with polycythaemia vera. Int J Mol Sci. 2021;22:5042. doi: 10.3390/ijms22095042. PubMed DOI PMC
Tun PWW, Buka RJ, Graham J, Dyer P. Heterozygous, germline JAK2 E846D substitution as the cause of familial erythrocytosis. Br J Haematol. 2022;198:923–926. doi: 10.1111/bjh.18320. PubMed DOI
Marty C, Saint-Martin C, Pecquet C, et al. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood. 2014;123:1372–1383. doi: 10.1182/blood-2013-05-504555. PubMed DOI
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023;141:1909–1921. doi: 10.1182/blood.2022017578. PubMed DOI
Ivanova M, Tsvetkova G, Lukanov T, Stoimenov A, Hadjiev E, Shivarov V. Probable HLA-mediated immunoediting of JAK2 V617F-driven oncogenesis. Exp Hematol. 2020;92:75–88.e10. doi: 10.1016/j.exphem.2020.09.200. PubMed DOI
Rinaldi CR, Rinaldi P, Alagia A, Gemei M, Esposito N, Formiggini F, Martinelli V, Senyuk V, Nucifora G, Pane F. Preferential nuclear accumulation of JAK2V617F in CD34+ but not in granulocytic, megakaryocytic, or erythroid cells of patients with Philadelphia-negative myeloproliferative neoplasia. Blood. 2010;116:6023–6026. doi: 10.1182/blood-2010-08-302265. PubMed DOI
Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, Kouzarides T. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature. 2009;461:819–822. doi: 10.1038/nature08448. PubMed DOI PMC
Liu F, Zhao X, Perna F, et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell. 2011;19:283–294. doi: 10.1016/j.ccr.2010.12.020. PubMed DOI PMC
Pastore F, Bhagwat N, Pastore A, et al. PRMT5 inhibition modulates E2F1 methylation and gene-regulatory networks leading to therapeutic efficacy in JAK2V617F-mutant MPN. Cancer Discov. 2020;10:1742–1757. doi: 10.1158/2159-8290.CD-20-0026. PubMed DOI PMC
Haan S, Wüller S, Kaczor J, Rolvering C, Nöcker T, Behrmann I, Haan C. SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene. 2009;28:3069–3080. doi: 10.1038/onc.2009.155. PubMed DOI