Changes of Sublingual Microcirculation during the Treatment of Severe Diabetic Ketoacidosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
Research area INCA
Charles University
PubMed
38541881
PubMed Central
PMC10971367
DOI
10.3390/jcm13061655
PII: jcm13061655
Knihovny.cz E-zdroje
- Klíčová slova
- diabetic ketoacidosis, hypertension, sublingual microcirculation,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Introduction: Diabetic ketoacidosis (DKA) is associated with volume depletion and hemodynamic alterations. Changes in systemic microcirculation during DKA have not been described so far. Methods: In this case report, we describe the evolution of sublingual microcirculatory changes, monitored using sidestream dark field (SDF) imaging during the treatment of severe diabetic ketoacidosis in a 13-year-old girl. The patient presented a pH of 6.84, a glycemia level of 27.2 mmol/L, a ketonemia level of 5.6 mmol/L, a base excess of -29.4 mmol/L, hypernatremia, hyperosmolality due to acute gastritis, and a malfunction of the glucose sensor. Sublingual microcirculation measurements using an SDF probe were initiated 60 min after the initiation of treatment, which was then repeated 2, 3, 4, 6, 12, and 24 h after treatment initiation, as well as on the day of discharge. Results: Substantial alterations of microvascular perfusion parameters, both total and small vessel densities, perfused vessel densities, and the DeBacker score, were observed during the first 6 to 12 h of treatment. The degree of microcirculatory alteration was strongly negatively correlated with calculated osmolality, sodium levels, ketone and lactate levels, and blood pressure values. Conclusions: DKA is, in its complexity, associated with a serious microcirculatory alteration. SDF imaging provides insight into the severity of the patient's microcirculatory alteration and its evolution during treatment.
Department of Pediatrics Masaryk Hospital Krajska Zdravotni 40113 Usti nad Labem Czech Republic
Department of Pediatrics Trutnov Regional Hospital 54101 Trutnov Czech Republic
Department of Pediatrics University Hospital Hradec Kralove 50005 Hradec Kralove Czech Republic
Faculty of Medicine in Hradec Kralove Charles University 50003 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Syed F.Z. Type 1 Diabetes Mellitus. Ann. Intern. Med. 2022;175:ITC33–ITC48. doi: 10.7326/AITC202203150. PubMed DOI
Elendu C., David J.A.M., Udoyen A.-O.M., Egbunu E.O.M., Ogbuiyi-Chima I.C.M., Unakalamba L.O.M., Temitope A.I.M., Ibhiedu J.O.M., Ibhiedu A.O.M., Nwosu P.U.M., et al. Comprehensive review of diabetic ketoacidosis: An update. Ann. Med. Surg. 2023;85:2802–2807. doi: 10.1097/MS9.0000000000000894. PubMed DOI PMC
DePiero A., Kuppermann N., Brown K.M., Schunk J.E., McManemy J.K., Rewers A., Stoner M.J., Tzimenatos L., Garro A., Myers S.R., et al. Hypertension during Diabetic Ketoacidosis in Children. J. Pediatr. 2020;223:156–163.e5. doi: 10.1016/j.jpeds.2020.04.066. PubMed DOI PMC
Trainor J.L., Glaser N.S., Tzimenatos L., Stoner M.J., Brown K.M., McManemy J.K., Schunk J.E., Quayle K.S., Nigrovic L.E., Rewers A., et al. Clinical and Laboratory Predictors of Dehydration Severity in Children with Diabetic Ketoacidosis. Ann. Emerg. Med. 2023;82:167–178. doi: 10.1016/j.annemergmed.2023.01.001. PubMed DOI PMC
Ugale J., Mata A., Meert K.L., Sarnaik A.P. Measured degree of dehydration in children and adolescents with type 1 diabetic ketoacidosis. Pediatr. Crit. Care Med. 2012;13:e103–e107. doi: 10.1097/PCC.0b013e3182231493. PubMed DOI
Fagan M.J., Avner J., Khine H. Initial Fluid Resuscitation for Patients with Diabetic Ketoacidosis: How Dry Are They? Clin. Pediatr. 2008;47:851–855. doi: 10.1177/0009922808319960. PubMed DOI
Singh D., Cantu M., Marx M.H.M., Akingbola O. Diabetic Ketoacidosis and Fluid Refractory Hypotension. Clin. Pediatr. 2015;55:182–184. doi: 10.1177/0009922815584549. PubMed DOI
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit. Care. 2015;19((Suppl. S3)):S8. doi: 10.1186/cc14726. PubMed DOI PMC
Charlton J.A., Thompson C.J., Baylis P.H. Possible mechanisms responsible for the rise in plasma vasopressin associated with diabetic ketoacidosis in the rat. J. Endocrinol. 1988;116:343–348. doi: 10.1677/joe.0.1160343. PubMed DOI
Salgado D.R., Favory R., De Backer D. Microcirculatory assessment in daily clinical practice—Not yet ready but not too far! Einstein. 2010;8:107–116. doi: 10.1590/s1679-45082010rw1311. PubMed DOI
De Backer D., Creteur J., Preiser J.-C., Dubois M.-J., Vincent J.-L. Microvascular Blood Flow Is Altered in Patients with Sepsis. Am. J. Respir. Crit. Care Med. 2002;166:98–104. doi: 10.1164/rccm.200109-016OC. PubMed DOI
Erdem Ö., Ince C., Tibboel D., Kuiper J.W. Assessing the Microcirculation with Handheld Vital Microscopy in Critically Ill Neonates and Children: Evolution of the Technique and Its Potential for Critical Care. Front. Pediatr. 2019;7:273. doi: 10.3389/fped.2019.00273. PubMed DOI PMC
González R., Urbano J., Solana M.J., Hervías M., Pita A., Pérez R., Álvarez R., Teigell E., Gil-Jaurena J.-M., Zamorano J., et al. Microcirculatory Differences in Children with Congenital Heart Disease According to Cyanosis and Age. Front. Pediatr. 2019;7:264. doi: 10.3389/fped.2019.00264. PubMed DOI PMC
Wright I.M.R., Latter J.L., Dyson R.M., Levi C.R., Clifton V.L. Videomicroscopy as a tool for investigation of the microcirculation in the newborn. Physiol. Rep. 2016;4:e12941. doi: 10.14814/phy2.12941. PubMed DOI PMC
Nussbaum C., Heringa A.C.F., Mormanova Z., Puchwein-Schwepcke A.F., Pozza S.B.-D., Genzel-Boroviczény O. Early Microvascular Changes with Loss of the Glycocalyx in Children with Type 1 Diabetes. J. Pediatr. 2014;164:584–589.e1. doi: 10.1016/j.jpeds.2013.11.016. PubMed DOI
Dilken O., Ergin B., Ince C. Assessment of sublingual microcirculation in critically ill patients: Consensus and debate. Ann. Transl. Med. 2020;8:793. doi: 10.21037/atm.2020.03.222. PubMed DOI PMC
De Backer D., Hollenberg S., Boerma C., Goedhart P., Büchele G., Ospina-Tascon G., Dobbe I., Ince C. How to evaluate the microcirculation: Report of a round table conference. Crit. Care. 2007;11:R101. doi: 10.1186/cc6118. PubMed DOI PMC
Ince C., Boerma E.C., Cecconi M., De Backer D., Shapiro N.I., Duranteau J., Pinsky M.R., Artigas A., Teboul J.-L., Reiss I.K.M., et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: Results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–299. doi: 10.1007/s00134-018-5070-7. PubMed DOI
Boerma E.C., Mathura K.R., Van Der Voort P.H., Spronk P.E., Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: A prospective validation study. Crit. Care. 2005;9:R601–R606. doi: 10.1186/cc3809. PubMed DOI PMC
Li Q., Liu X., Jia M., Sun F., Li Y., Zhang H., Liu X., He H., Zhao Z., Yan Z., et al. Assessment of sublingual microcirculation for the screening of diabetic nephropathy. Diabetol. Metab. Syndr. 2022;14:90. doi: 10.1186/s13098-022-00864-3. PubMed DOI PMC
Glaser N., Fritsch M., Priyambada L., Rewers A., Cherubini V., Estrada S., Wolfsdorf J.I., Codner E. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr. Diabetes. 2022;23:835–856. doi: 10.1111/pedi.13406. PubMed DOI
Krausova V., Neumann D., Kraus J., Dostalova V., Dostal P. Sublingual microcirculation in healthy pediatric population using the sidestream dark-field imaging method. Clin. Hemorheol. Microcirc. 2023;85:163–171. doi: 10.3233/CH-231851. PubMed DOI
Hillier T.A., Abbott R.D., Barrett E.J. Hyponatremia: Evaluating the correction factor for hyperglycemia. Am. J. Med. 1999;106:399–403. doi: 10.1016/S0002-9343(99)00055-8. PubMed DOI
Deeter K.H., Roberts J.S., Bradford H., Richards T., Shaw D., Marro K., Chiu H., Pihoker C., Lynn A., Vavilala M.S. Hypertension despite dehydration during severe pediatric diabetic ketoacidosis. Pediatr. Diabetes. 2011;12:295–301. doi: 10.1111/j.1399-5448.2010.00695.x. PubMed DOI PMC
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114((Suppl. S2)):555–576. doi: 10.1542/peds.114.S2.555. PubMed DOI
Ibarra G., Majmundar M.M., Pacheco E., Zala H., Chaudhari S. Hypernatremia in Diabetic Ketoacidosis: Rare Presentation and a Cautionary Tale. Cureus. 2020;12:e11841. doi: 10.7759/cureus.11841. PubMed DOI PMC
Durr J.A., Hoffman W.H., Hensen J., Sklar A.H., el Gammal T., Steinhart C.M. Osmoregulation of vasopressin in diabetic ketoacidosis. Am. J. Physiol. Metab. 1990;259:E723–E728. doi: 10.1152/ajpendo.1990.259.5.E723. PubMed DOI
Gandhi M.J., Suvarna T.T. Cardiovascular complications in diabetic ketoacidosis. Int. J. Diab. Dev. Ctries. 1995;15:132–133.
Hendricks N. The microcirculation. S. Afr. J. Anaesth. Analg. 2020;26((Suppl. S3)):S62–S65. doi: 10.36303/SAJAA.2020.26.6.S3.2540. DOI
Kim H.J., Kim D.H., Jun Y.H., Lee J.E. A rare diabetes ketoacidosis in combined severe hypernatremic hyperosmolarity in a new-onset Asian adolescent with type I diabetes. BMJ Case Rep. 2014;2014:bcr2014208016. doi: 10.1136/bcr-2014-208016. PubMed DOI PMC
McDonnell C.M., Pedreira C.C., Vadamalayan B., Cameron F.J., Werther G.A. Diabetic ketoacidosis, hyperosmolarity and hypernatremia: Are high-carbohydrate drinks worsening initial presentation? Pediatr. Diabetes. 2005;6:90–94. doi: 10.1111/j.1399-543X.2005.00107.x. PubMed DOI
Amitai I., Goder K., Husseini N., Rousso M. Hypernatremic dehydration complicated by peripheral gangrene in infancy. Isr. J. Med. Sci. 1983;19:538–540. PubMed
Heistad D.D., Abboud F.M., Ballard D.R. Relationship between plasma sodium concentration and vascular reactivity in man. J. Clin. Investig. 1971;50:2022–2032. doi: 10.1172/JCI106695. PubMed DOI PMC
Ün I., Kurt A.H., Büyükafşar K. Hyperosmolar glucose induces vasoconstriction through Rho/Rho-kinase pathway in the rat aorta. Fundam. Clin. Pharmacol. 2011;27:244–251. doi: 10.1111/j.1472-8206.2011.01014.x. PubMed DOI
Zhou Q., Dai C., Zhu Y., Han T., Zhou J., Zhao L., Wang X., Liu H., Qu J., Li W. The effectiveness and feasibility of fluid resuscitation directed by microcirculation monitoring in patients with septic shock: A randomized controlled trial. Ann. Palliat. Med. 2021;10:9069–9077. doi: 10.21037/apm-21-1971. PubMed DOI