Low-Temperature-Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinker: A Passive Smart Material with Potential as Viscoelastic Coupling. Part II-Viscoelastic and Rheological Properties
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA19-04925S
Czech Science Foundation
PubMed
33260294
PubMed Central
PMC7760245
DOI
10.3390/polym12122840
PII: polym12122840
Knihovny.cz E-resources
- Keywords
- liquid crystals, reversible networks, rheology, self-assembly, self-healing, smart materials,
- Publication type
- Journal Article MeSH
Rheological and viscoelastic properties of physically crosslinked low-temperature elastomers were studied. The supramolecularly assembling copolymers consist of linear polydimethylsiloxane (PDMS) elastic chains terminated on both ends with mesogenic building blocks (LC) of azobenzene type. They are generally and also structurally highly different from the well-studied LC polymer networks or LC elastomers: The LC units make up only a small volume fraction in our materials and act as fairly efficient physical crosslinkers with thermotropic properties. The aggregation (nano-phase separation) of the relatively rare, small and spatially separated terminal LC units generates temperature-switched viscoelasticity in the molten copolymers. Their rheological behavior was found to be controlled by an interplay of nano-phase separation of the LC units (growth and splitting of their aggregates) and of the thermotropic transitions in these aggregates (which change their stiffness). As a consequence, multiple gel points (up to three) are observed in temperature scans of the copolymers. The physical crosslinks also can be reversibly disconnected by large mechanical strain in the 'warm' rubbery state, as well as in melt (thixotropy). The kinetics of crosslink formation was found to be fast if induced by temperature and extremely fast in case of internal self-healing after strain damage. Thixotropic loop tests hence display only very small hysteresis in the LC-melt-state, although the melts show very distinct shear thinning. Our study evaluates structure-property relationships in three homologous systems with elastic PDMS segments of different length (8.6, 16.3 and 64.4 repeat units). The studied copolymers might be of interest as passive smart materials, especially as temperature-controlled elastic/viscoelastic mechanical coupling.
See more in PubMed
Jaunich M., Stark W., Wolff D. Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement. Polym. Test. 2012;31:987–992. doi: 10.1016/j.polymertesting.2012.07.016. DOI
Horodecka S., Strachota A., Mossety-Leszczak B., Strachota B., Šlouf M., Zhigunov A., Vyroubalová M., Kaňková D., Netopilík M., Walterová Z. Low-temperature-meltable elastomers based on linear polydimethylsiloxane chains alpha,omega-terminated with mesogenic groups as physical crosslinker: A passive smart material with potential as viscoelastic coupling. Part I: Synthesis and phase behaviour. Polymers. 2020;12:2476. doi: 10.3390/polym12112476. PubMed DOI PMC
Strachota A., Kroutilová I., Kovářová J., Matějka L. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Thermomechanical Properties. Macromolecules. 2004;37:9457–9464. doi: 10.1021/ma048448y. DOI
Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behaviour. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI
Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI
Strachota A., Whelan P., Kříž J., Brus J., Urbanová M., Šlouf M., Matějka L. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks. Polymer. 2007;48:3041–3058. doi: 10.1016/j.polymer.2007.03.052. DOI
Colombani O., Barioz C., Bouteiller L., Chaneac C., Fomperie L., Lortie F., Montes H. Attempt toward 1D Cross-Linked Thermoplastic Elastomers: Structure and Mechanical Properties of a New System. Macromolecules. 2005;38:1752–1759. doi: 10.1021/ma048006m. DOI
Botterhuis N.E., van Beek D.J.M., van Gemert G.M.L., Bosman A.W., Sijbesma R.P. Self-Assembly and Morphology of Polydimethylsiloxane Supramolecular Thermoplastic Elastomers. J. Polym. Sci. Part A Polym. Chem. 2008;46:3877–3885. doi: 10.1002/pola.22680. DOI
Ślęczkowski M.L., Meijer E.W., Palmans A.R.A. Cooperative Folding of Linear Poly(dimethyl siloxane)s via Supramolecular Interactions. Macromol. Rapid Commun. 2017;38:1700566. doi: 10.1002/marc.201700566. PubMed DOI
Rambarran T., Bertrand A., Gonzaga F., Boisson F., Bernard J., Fleury E., Ganachaud F., Brook M.A. Sweet supramolecular elastomers from a,x-(b-cyclodextrin terminated) PDMS. Chem. Commun. 2016;52:6681–6684. doi: 10.1039/C6CC02632J. PubMed DOI
Strachota A., Rodzeń K., Ribot F., Trchová M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI
Fawcett A.S., Brook M.A. Thermoplastic Silicone Elastomers through Self-Association of Pendant Coumarin Groups. Macromolecules. 2014;47:1656–1663. doi: 10.1021/ma402361z. DOI
Lamers B.A.G., Graf R., de Waal B.F.M., Vantomme G., Palmans A.R.A., Meijer E.W. Polymorphism in the Assembly of Phase-Segregated Block Molecules: Pathway Control to 1D and 2D Nanostructures. J. Am. Chem. Soc. 2019;141:15456–15463. doi: 10.1021/jacs.9b08733. PubMed DOI PMC
Lamers B.A.G., Ślęczkowski M.L., Wouters F., Engels T.A.P., Meijer E.W., Palmans A.R.A. Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strength. Polym. Chem. 2020;11:2847–2854. doi: 10.1039/D0PY00139B. DOI
Vasilev V.G., Pryakhina T.A., Shragin D.I., Kononevich Y.N., Papkov V.S., Muzafarov A.M. Formation of a Physical Crosslinked Structure in Polydimethylsiloxanes Modified with Long-Chain Hydrocarbon Substituents with Polar Fragments. Polym. Sci. Ser. 2017;59:320–327. doi: 10.1134/S1560090417030150. DOI
Dollase T., Spiess H.W., Gottlieb M., Yerushalmi-Rozen R. Crystallization of PDMS: The effect of physical and chemical crosslinks. Europhys. Lett. 2002;60:390–396. doi: 10.1209/epl/i2002-00276-4. DOI
Petr M., Katzman B., DiNatale W., Hammond P.T. Synthesis of a New, Low-Tg Siloxane Thermoplastic Elastomer with a Functionalizable Backbone and Its Use as a Rapid, Room Temperature Photoactuator. Macromolecules. 2013;46:2823–2832. doi: 10.1021/ma400031z. DOI
Dodge L., Chen Y., Brook M.A. Silicone Boronates Reversibly Crosslink Using Lewis Acid–Lewis Base Amine Complexes. Chem. Eur. J. 2014;20:9349–9356. doi: 10.1002/chem.201402877. PubMed DOI
Li C.H., Wang C., Keplinger C., Zuo J.L., Jin L., Sun Y., Zheng P., Cao Y., Lissel F., Linder C., et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016;8:618–624. doi: 10.1038/nchem.2492. PubMed DOI
Li X., Zhang D., Xiang K., Huang G. Synthesis of polyborosiloxane and its reversible physical crosslinks. RSC Adv. 2014;4:1–8. doi: 10.1039/C4RA01877J. DOI
Seetapan N., Fuongfuchat A., Sirikittikul D., Limparyoon N. Unimodal and bimodal networks of physically crosslinked polyborodimethylsiloxane: Viscoelastic and equibiaxial extension behaviors. J. Polym. Res. 2013;20:183. doi: 10.1007/s10965-013-0183-8. DOI
Horodecka S., Strachota A., Mossety-Leszczak B., Šlouf M., Zhigunov A., Vyroubalová M., Kaňková D., Netopilík M. Meltable copolymeric elastomers based on polydimethylsiloxane with multiplets of pendant liquid-crystalline groups as physical crosslinker: A self-healing structural material with a potential for smart applications. Eur. Polym. J. 2020;137 doi: 10.1016/j.eurpolymj.2020.109962. DOI
Wissbrun K.F. Rheology of Rod-like Polymers in the Liquid Crystalline State. J. Rheol. 1981;25:619–662. doi: 10.1122/1.549634. DOI
Marrucci G. Rheology of liquid crystalline polymers. Pure Appl. Chem. 1985;57:1545–1552. doi: 10.1351/pac198557111545. DOI
Guskey S.M., Winter H.H. Transient shear behavior of a thermotropic liquid crystalline polymer in the nematic state. J. Rheol. 1991;35:1191–1207. doi: 10.1122/1.550171. DOI
Marrucci G., Greco F. Flow Behavior of Liquid Crystalline Polymers. In: Prigogine I., Rice S.A., editors. Advances in Chemical Physics. Volume 86. John Wiley & Sons, Inc.; New York, NY, USA: 1993. pp. 331–404. DOI
Jamieson A.M., Gu D., Chen F.L., Smith S. Viscoelastic behavior of nematic monodomains containing liquid crystal polymers. Prog. Polym. Sci. 1996;21:981–1033. doi: 10.1016/S0079-6700(96)00009-3. DOI
Kiss G., Porter R.S. Rheology of concentrated solutions of poly(γ-benzyl-glutamate) J. Polym. Sci. Polym. Symp. 1978;65:193–211. doi: 10.1002/polc.5070650117. DOI
Kiss G., Porter R.S. Rheology of concentrated solutions of helical polypeptides. J. Polym. Sci. Polym. Phys. Ed. 1980;18:361–388. doi: 10.1002/pol.1980.180180217. DOI
Moldenaers P., Mewis J. On the nature of viscoelasticity in polymeric liquid crystals. J. Rheol. 1993;37:367–380. doi: 10.1122/1.550448. DOI
Asada T., Muramatsu H., Watanabe R., Onogi S. Rheooptical Studies of Racemic Poly(γ-benzyl glutamate) Liquid Crystals. Macromolecules. 1980;13:867–871. doi: 10.1021/ma60076a019. DOI
Onogi S., Asada T. Rheology and Rheo-Optics of Polymer Liquid Crystals. In: Astarita G., Marrucci G., Nicolais L., editors. Rheology. Volume 1. Springer; Boston, MA, USA: 1980. pp. 127–147. DOI
Doi M. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci. Polym. Physics Ed. 1981;19:229–243. doi: 10.1002/pol.1981.180190205. DOI
Doi M., Edwards S.F. The Theory of Polymer Dynamics. Oxford University Press; Oxford, UK: 1986.
Larson R.G., Doi M. Mesoscopic domain theory for textured liquid crystalline polymers. J. Rheol. 1991;35:539–563. doi: 10.1122/1.550180. DOI
Larson R.G. The Structure and Rheology of Complex Fluids. Oxford University Press; New York, NY, USA: 1999.
Burghardt W.R. Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers. Macromol. Chem. Phys. 1998;199:471–488. doi: 10.1002/(SICI)1521-3935(19980401)199:4<471::AID-MACP471>3.0.CO;2-9. DOI
Baek S.G., Magda J.J., Larson R.G. Rheological differences among liquid-crystalline polymers. I. The first and second normal stress differences of PBG solutions. J. Rheol. 1993;37:1201–1224. doi: 10.1122/1.550377. DOI
Baek S.G., Magda J.J., Larson R.G., Hudson S.D. Rheological differences among liquid-crystalline polymers. II. Disappearance of negative N1 in densely packed lyotropes and thermotropes. J. Rheol. 1994;38:1473–1503. doi: 10.1122/1.550555. DOI
Ugaz V.M., Burghardt W.R., Zhou W., Kornfield J.A. Transient molecular orientation and rheology in flow aligning thermotropic liquid crystalline polymers. J. Rheol. 2001;45:1029–1063. doi: 10.1122/1.1389317. DOI
Azoug A., Vasconcellos V., Dooling J., Saed M., Yakacki C.M., Nguyen T.D. Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer. 2016;98:165–171. doi: 10.1016/j.polymer.2016.06.022. DOI
Lee K.M., Han C.D. Rheology of Nematic Side-Chain Liquid-Crystalline Polymer: Comparison with Main-Chain Liquid-Crystalline Polymer. Macromolecules. 2002;35:6263–6273. doi: 10.1021/ma012240k. DOI
Kim S.S., Han C.D. Effect of Thermal History on the Rheological Behavior of a Thermotropic Liquid-Crystalline Polymer. Macromolecules. 1993;26:3176–3186. doi: 10.1021/ma00064a030. DOI
Colby R.H., Gillmor J.R., Galli G., Laus M., Ober C.K., Hall E. Linear viscoelasticity of side chain liquid crystal polymer. Liq. Cryst. 1993;13:233–245. doi: 10.1080/02678299308026297. DOI
Berghausen J., Fuchs J., Richtering W. Rheology and Shear Orientation of a Nematic Liquid Crystalline Side-Group Polymer with Laterally Attached Mesogenic Units. Macromolecules. 1997;30:7574–7581. doi: 10.1021/ma970430i. DOI
Chang S., Han C.D. Effect of Flexible Spacers on the Rheological Behavior of Main-Chain Thermotropic Liquid-Crystalline Polymers Having Bulky Pendent Side Groups. Macromolecules. 1997;30:2021–2034. doi: 10.1021/ma961729o. DOI
Lee K.M., Han C.D. Effect of Flexible Spacer Length on the Rheology of Side-Chain Liquid-Crystalline Polymers. Macromolecules. 2003;36:8796–8810. doi: 10.1021/ma030303o. DOI
Wewerka A., Viertler K., Vlassopoulos D., Stelzer F. Structure and rheology of model side-chain liquid crystalline polymers with varying mesogen length. Rheol. Acta. 2001;40:416–425. doi: 10.1007/s003970100177. DOI
Yang I.K., Chang S.H. The Smectic Rheology of a Polysiloxane Side Chain Liquid Crystalline Polymer. J. Polym. Res. 2002;9:163–168. doi: 10.1023/A:1021335507404. DOI
Hoshio H., Jin J.I., Lenz R.W. Liquid crystalline behavior of polymeric glycols terminated with aromatic diester and diacid mesogenic groups. J. Appl. Polym. Sci. 1984;29:547–554. doi: 10.1002/app.1984.070290209. DOI
Chien J.C.W., Zhou R., Lillya C.P. Liquid-crystalline compounds and polymers from promesogens. Macromolecules. 1987;20:2340–2344. doi: 10.1021/ma00176a003. DOI
Lin Y.G., Zhou R., Chien J.C.W., Winter H.H. Rheology of a Twin Liquid Crystalline Polymer. Macromolecules. 1988;21:2014–2018. doi: 10.1021/ma00185a022. DOI
Oppermann W., Braatz K., Finkelmann H., Gleim W., Kock H.J., Rehage G. Viscoelastic properties of silicone polymers with liquid crystalline behaviour. Rheol. Acta. 1982;21:423–426. doi: 10.1007/BF01534308. DOI
Stukenbroeker T., Wang W., Winne J.M., Du Prez F.E., Nicolaÿ R., Leibler L. Polydimethylsiloxane quenchable vitrimers. Polym. Chem. 2017;8:6590–6593. doi: 10.1039/C7PY01488K. DOI
Meng Y., Xu W., Newman M.R., Benoit D.S.W., Anthamatten M. Thermoreversible Siloxane Networks: Soft Biomaterials with Widely Tunable Viscoelasticity. Adv. Funct. Mater. 2019;29:1903721. doi: 10.1002/adfm.201903721. DOI
Winter H.H., Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986;30:367–382. doi: 10.1122/1.549853. DOI