• This record comes from PubMed

Low-Temperature Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinkers: A Passive Smart Material with Potential as Viscoelastic Coupling. Part I: Synthesis and Phase Behavior

. 2020 Oct 25 ; 12 (11) : . [epub] 20201025

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-04925S Grantová Agentura České Republiky

Physically crosslinked low-temperature elastomers were prepared based on linear polydimethylsiloxane (PDMS) elastic chains terminated on both ends with mesogenic building blocks (LC) of azobenzene type. They are generally (and also structurally) highly different from the well-studied LC polymer networks (light-sensitive actuators). The LC units also make up only a small volume fraction in our materials and they do not generate elastic energy upon irradiation, but they act as physical crosslinkers with thermotropic properties. Our elastomers lack permanent chemical crosslinks-their structure is fully linear. The aggregation of the relatively rare, small, and spatially separated terminal LC units nevertheless proved to be a considerably strong crosslinking mechanism. The most attractive product displays a rubber plateau extending over 100 °C, melts near 8 °C, and is soluble in organic solvents. The self-assembly (via LC aggregation) of the copolymer molecules leads to a distinctly lamellar structure indicated by X-ray diffraction (XRD). This structure persists also in melt (polarized light microscopy, XRD), where 1-2 thermotropic transitions occur. The interesting effects of the properties of this lamellar structure on viscoelastic and rheological properties in the rubbery and in the melt state are discussed in a follow-up paper ("Part II"). The copolymers might be of interest as passive smart materials, especially as temperature-controlled elastic/viscoelastic mechanical coupling. Our study focuses on the comparison of physical properties and structure-property relationships in three systems with elastic PDMS segments of different length (8.6, 16.3, and 64.4 repeat units).

See more in PubMed

Dubois J.C., LeBarny P., Mauzac M., Noel C., Demus D., Goodby J.W., Gray G.W., Spiess H.W., Vill V. Handbook of Liquid Crystals. Wiley-VCH; Weinheim, Germany: 1998. Print ISBN 9783527292707; Online ISBN 9783527620760. DOI

Hsu C.S. The application of side-chain liquid-crystalline polymers. Prog. Polym. Sci. 1997;22:829–871. doi: 10.1016/S0079-6700(97)00008-7. DOI

Finkelmann H., Rehage G. Investigations on liquid crystalline polysiloxanes, 1. Synthesis and characterization of linear polymers. Macromol. Rapid Commun. 1980;1:31–34. doi: 10.1002/marc.1980.030010107. DOI

Finkelmann H., Rehage G. Investigations on liquid crystalline polysiloxanes, 2. Optical properties of cholesteric phases and influence of the flexible spacer on the mobility of the mesogenic groups. Macromol. Rapid Commun. 1980;1:733–740. doi: 10.1002/marc.1980.030011206. DOI

Finkelmann H., Kock H.J., Rehage G. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—a new type of liquid crystalline material. Macromol. Rapid Commun. 1981;2:317–322. doi: 10.1002/marc.1981.030020413. DOI

Finkelmann H., Rehage G. Investigations on liquid crystalline polysiloxanes, 4. Cholesteric homopolymers—synthesis and optical characterization. Macromol. Rapid Commun. 1982;3:859–864. doi: 10.1002/marc.1982.030031203. DOI

Finkelmann H., Kock H.J., Gleim W., Rehage G. Investigations on liquid crystalline polysiloxanes 5. Orientation of LC-elastomers by mechanical forces. Macromol. Rapid Commun. 1984;5:287–293. doi: 10.1002/marc.1984.030050508. DOI

Küpfer J., Finkelmann H. Nematic liquid single crystal elastomers. Macromol. Rapid Commun. 1991;12:717–726. doi: 10.1002/marc.1991.030121211. DOI

Wang M., Guo L.X., Lin B.P., Zhang X.Q., Sun Y., Yang H. Photo-responsive polysiloxane-based azobenzene liquid crystalline polymers prepared by thiol-ene click chemistry. Liq. Cryst. 2016;43:1626–1635. doi: 10.1080/02678292.2016.1191686. DOI

Wang G.F., Xiong Y., Tang H.D. Synthesis and characterization of a graft side-chain liquid crystalline polysiloxane. J. Organomet. Chem. 2015;77:50–54. doi: 10.1016/j.jorganchem.2014.10.026. DOI

Zhao W., Lin B.P., Zhang X.Q., Sun Y., Yang H. Polysiloxane Side-chain Liquid Crystalline Polymers Prerpared by Alkyne Hydrosilylation. Chin. J. Polym. Sci. 2015;33:1431–1441. doi: 10.1007/s10118-015-1697-9. DOI

Aguilera C., Bartulin J., Hisgen B., Ringsdorf H. Liquid crystalline main chain polymers with highly flexible siloxane spacers. Macromol. Chem. Phys. 1983;184:253–262. doi: 10.1002/macp.1983.021840202. DOI

Braun F., Willner L., Hess M., Kosfeld R. Synthesis and thermal properties of liquid-crystalline polyesters with mesogenic units and siloxane spacers in the main chain. Die Makromol. Chem. 1990;191:1775–1785. doi: 10.1002/macp.1990.021910804. DOI

Donnio B., Wermter H., Finkelmann H.A. Simple and Versatile Synthetic Route for the Preparation of Main-Chain, Liquid-Crystalline Elastomers. Macromolecules. 2000;33:7724–7729. doi: 10.1021/ma0002850. DOI

Patil H.P., Liao J., Hedden R.C. Smectic Ordering in Main-Chain Siloxane Polymers and Elastomers Containing p-Phenylene Terephthalate Mesogens. Macromolecules. 2007;40:6206–6216. doi: 10.1021/ma0706374. DOI

Burke K.A., Rousseau I.A., Mather P.T. Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. Polymer. 2014;55:5897–5907. doi: 10.1016/j.polymer.2014.06.088. DOI

Samui A.B., Pandey S., Mishra S.P. Main chain photoresponsive liquid crystalline polymer synthesized through hydrosilylation. RSC Adv. 2015;5:68351–68355. doi: 10.1039/C5RA14818A. DOI

Saed M.O., Volpe R.H., Traugutt N.A., Visvanathan R., Clark N.A., Yakacki C.M. High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter. 2017;13:7537–7547. doi: 10.1039/C7SM01380A. PubMed DOI

Pandey S., Kolli B., Mishra S.P., Samui A.B. Siloxane polymers containing azo moieties synthesized by click chemistry for photo responsive and liquid crystalline applications. J. Polym. Sci. Part A Polym. Chem. 2012;50:1205–1215. doi: 10.1002/pola.25885. DOI

Shenouda I.G., Chien L.C. New ferroelectric liquid-crystalline polysiloxanes containing cyanohydrin chiral mesogens: L-norleucine series. Macromolecules. 1993;26:5020–5023. doi: 10.1021/ma00071a006. DOI

Zhou Q.L., Zhang J.T., Ren Z.J., Yan S.K., Xie P., Zhang R.B. A Stable and High-Efficiency Blue-Light Emitting Terphenyl-Bridged Ladder Polysiloxane. Macromol. Rapid Commun. 2008;29:1259–1263. doi: 10.1002/marc.200800188. DOI

Kawakami H., Mori Y., Abe H., Nagaoka S. Gas transport properties of liquid crystalline polysiloxane with laterally attached side chain. J. Membr. Sci. 1997;133:245–253. doi: 10.1016/S0376-7388(97)00086-0. DOI

Rao H.X., Zhang Z.Y. Preparation, Characterization, and Permeation Property of a Liquid Crystal/PDMS Membrane Material. J. Appl. Polym. Sci. 2012;123:191–199. doi: 10.1002/app.34450. DOI

Ganicz T., Stanczyk W.A., Chmielecka J., Kowalski J. Liquid crystalline polycarbosilanes and poly(di-n-butylsiloxane) as stationary phases in gas chromatography. Polym. Int. 2009;58:248–254. doi: 10.1002/pi.2527. DOI

Warner M., Terentjev E. Liquid Crystal Elastomers. Oxford University Press; Oxford, UK: 2003. PubMed

Ikeda T., Mamiya J., Yu Y. Photomechanics of Liquid-Crystalline Elastomers and Other Polymers. Angew. Chem. Int. Ed. 2007;46:506–528. doi: 10.1002/anie.200602372. PubMed DOI

Ohm C., Brehmer M., Zentel R. Liquid Crystalline Elastomers as Actuators and Sensors. Adv. Mater. 2010;22:3366–3387. doi: 10.1002/adma.200904059. PubMed DOI

Strachota A., Kroutilová I., Kovářová J., Matějka L. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes (POSS). Thermomechanical Properties. Macromolecules. 2004;37:9457–9464. doi: 10.1021/ma048448y. DOI

Strachota A., Whelan P., Kříž J., Brus J., Urbanová M., Šlouf M., Matějka L. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks. Polymer. 2007;48:3041–3058. doi: 10.1016/j.polymer.2007.03.052. DOI

Strachota A., Rodzeń K., Ribot F., Trchová M., Steinhart M., Starovoytova L., Pavlova E. Behavior of Tin-Based “Super-POSS” Incorporated in Different Bonding Situations in Hybrid Epoxy Resins. Macromolecules. 2014;47:4266–4287. doi: 10.1021/ma500507j. DOI

Rodzeń K., Strachota A., Ribot F., Matějka L., Kovářová J., Trchová M., Šlouf M. Reactivity of the tin homolog of POSS, butylstannoxane dodecamer, in oxygen-induced crosslinking reactions with an organic polymer matrix: Study of long-time behaviour. Polym. Degrad. Stab. 2015;118:147–166. doi: 10.1016/j.polymdegradstab.2015.04.020. DOI

Mossety-Leszczak B., Strachota B., Strachota A., Steinhart M., Šlouf M. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field. Eur. Polym. J. 2015;72:238–255. doi: 10.1016/j.eurpolymj.2015.09.018. DOI

Horodecka S., Strachota A., Mossety-Leszczak B., Šlouf M., Zhigunov A., Vyroubalová M., Kaňková D., Netopilík M. Meltable copolymeric elastomers based on polydimethylsiloxane with multiplets of pendant liquid-crystalline groups as physical crosslinker: A self-healing structural material with a potential for smart applications. Eur. Polym. J. 2020;137 doi: 10.1016/j.eurpolymj.2020.109962. DOI

Colombani O., Barioz C., Bouteiller L., Chaneac C., Fomperie L., Lortie F., Montes H. Attempt toward 1D Cross-Linked Thermoplastic Elastomers: Structure and Mechanical Properties of a New System. Macromolecules. 2005;38:1752–1759. doi: 10.1021/ma048006m. DOI

Botterhuis N.E., van Beek D.J.M., van Gemert G.M.L., Bosman A.W., Sijbesma R.P. Self-Assembly and Morphology of Polydimethylsiloxane Supramolecular Thermoplastic Elastomers. J. Polym. Sci. Part A Polym. Chem. 2008;46:3877–3885. doi: 10.1002/pola.22680. DOI

Ślęczkowski M.L., Meijer E.W., Palmans A.R.A. Cooperative Folding of Linear Poly(dimethyl siloxane)s via Supramolecular Interactions. Macromol. Rapid Commun. 2017;38:1–5. doi: 10.1002/marc.201700566. PubMed DOI

Rambarran T., Bertrand A., Gonzaga F., Boisson F., Bernard J., Fleury E., Ganachaud F., Brook M.A. Sweet supramolecular elastomers from a,x-(b-cyclodextrin terminated) PDMS. Chem. Commun. 2016;52:6681–6684. doi: 10.1039/C6CC02632J. PubMed DOI

Fawcett A.S., Brook M.A. Thermoplastic Silicone Elastomers through Self-Association of Pendant Coumarin Groups. Macromolecules. 2014;47:1656–1663. doi: 10.1021/ma402361z. DOI

Lamers B.A.G., Graf R., de Waal B.F.M., Vantomme G., Palmans A.R.A., Meijer E.W. Polymorphism in the Assembly of Phase-Segregated Block Molecules: Pathway Control to 1D and 2D Nanostructures. J. Am. Chem. Soc. 2019;141:15456–15463. doi: 10.1021/jacs.9b08733. PubMed DOI PMC

Lamers B.A.G., Ślęczkowski M.L., Wouters F., Engels T.A.P., Meijer E.W., Palmans A.R.A. Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strength. Polym. Chem. 2020;11:2847–2854. doi: 10.1039/D0PY00139B. DOI

Dodge L., Chen Y., Brook M.A. Silicone Boronates Reversibly Crosslink Using Lewis Acid–Lewis Base Amine Complexes. Chem. A Eur. J. 2014;20:9349–9356. doi: 10.1002/chem.201402877. PubMed DOI

Li C.H., Wang C., Keplinger C., Zuo J.L., Jin L., Sun Y., Zheng P., Cao Y., Lissel F., Linder C., et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016;8:618–624. doi: 10.1038/nchem.2492. PubMed DOI

Horodecka S., Strachota A., Mossety-Leszczak B., Strachota B., Šlouf M. Low-temperature-meltable elastomers based on linear polydimethylsiloxane chains alpha,omega-terminated with mesogenic groups as physical crosslinker: A passive smart material with potential as viscoelastic coupling. Part II: Viscoelastic and rheological properties. Polymers. 2020 Submitted. PubMed PMC

Miniewicz A., Girones J., Karpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C. 2014;2:432–440. doi: 10.1039/C3TC31791A. DOI

Kieffer J., Karkoulis D. PyFAI, a versatile library for azimuthal regrouping. J. Phys. Conf. Ser. 2013;425:1–6. doi: 10.1088/1742-6596/425/20/202012. DOI

Slouf M., Krejcikova S., Vackova T., Kratochvil J., Novak L. In situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites. Front. Mater. 2015;2:1–12. doi: 10.3389/fmats.2015.00023. DOI

Vackova T., Kratochvil J., Ostafinska A., Krejcikova S., Nevoralova M., Slouf M. Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles. Polym. Bull. 2017;74:445–464. doi: 10.1007/s00289-016-1723-2. DOI

Klonos P.A. Crystallization, glass transition, and molecular dynamics in PDMS of low molecular weights: A calorimetric and dielectric study. Polymer. 2018;159:169–180. doi: 10.1016/j.polymer.2018.11.028. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...