Evidence of introgression, ecological divergence and adaptation in Asterias sea stars
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DEB-1253710
National Science Foundation
PubMed
37691604
DOI
10.1111/mec.17118
Knihovny.cz E-zdroje
- Klíčová slova
- echinoderms, ecological genetics, environmental niche modelling, hybridization, marine invertebrates, molecular evolution,
- Publikační typ
- časopisecké články MeSH
Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome-wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czechia
Odum School of Ecology and Department of Genetics University of Georgia Georgia Athens USA
The Academy of Natural Sciences of Drexel University Pennsylvania Philadelphia USA
The American Museum of Natural History New York New York City USA
The City College of New York New York New York City USA
The Graduate Center The City University of New York New York New York City USA
Zobrazit více v PubMed
Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C. A., Buggs, R., Butlin, R. K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S. H., Hermansen, J. S., Hewitt, G., Hudson, A. G., Jiggins, C., … Zinner, D. (2013). Hybridization and speciation. Journal of Evolutionary Biology, 26, 229-246.
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541-545.
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews. Genetics, 17, 81-92.
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., de Clerck, O., & Tittensor, D. (2018). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography: A Journal of Macroecology, 27, 277-284.
Baird, S. J. E., Petružela, J., Jaroň, I., & Škrabánek, P. (2022). Genome polarisation for detecting barriers to geneflow. Methods in Ecology and Evolution, 14, 512-528.
Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Rcology and Systematics, 16, 113-148.
Barton, N. H., & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. Nature, 341, 497-503.
Barton, N. H., & Hewitt, G. (1981). Hybrid zones and speciation. In: W. Atchley, & D. Woodruff (Eds.), Evolution and Speciation (pp. 109-145). Cambridge University Press.
Barton, N. H., Hewitt, G. M., Atchley, W. R., & Woodruff, D. S. (1981). Hybrid zones and speciation. Evolution and Speciation, 109-145.
Baskett, M. L., & Gomulkiewicz, R. (2011). Introgressive hybridization as a mechanism for species rescue. Theoretical Ecology, 4, 223-239.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300.
Bernatchez, L. (2016). On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. Journal of fish biology, 89, 2519-2556.
Bierne, N., Borsa, P., Daguin, C., Jollivet, D., Viard, F., Bonhomme, F., & David, P. (2003). Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Molecular Ecology, 12, 447-461.
Bierne, N., Gagnaire, P.-A., & David, P. (2013). The geography of introgression in a patchy environment and the thorn in the side of ecological speciation. Current Zoology, 59, 72-86.
Bierne, N., Welch, J., Loire, E., Bonhomme, F., & David, P. (2011). The coupling hypothesis: Why genome scans may fail to map local adaptation genes. Molecular Ecology, 20, 2044-2072.
Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77.
Brauer, C. J., Sandoval-Castillo, J., Gates, K., Hammer, M. P., Unmack, P. J., Bernatchez, L., & Beheregaray, L. B. (2023). Natural hybridization reduces vulnerability to climate change. Nature Climate Change, 13, 282-289.
Brickman, D., Alexander, M. A., Pershing, A., Scott, J. D., & Wang, Z. (2021). Projections of physical conditions in the Gulf of Maine in 2050 (p. 9). Elementa.
Bronson, C. L., Grubb, T. C., Jr., & Braun, M. J. (2003). A test of the endogenous and exogenous selection hypotheses for the maintenance of a narrow avian hybrid zone. Evolution, 57, 630-637.
Byrne, M., Morrice, M. G., & Wolf, B. (1997). Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: Reproduction and current distribution. Marine Biology, 127, 673-685.
Capblancq, T., & Forester, B. R. (2021). Redundancy analysis: A swiss army knife for landscape genomics. Methods in Ecology and Evolution, 12, 2298-2309.
Casties, I., Clemmesen, C., Melzner, F., & Thomsen, J. (2015). Salinity dependence of recruitment success of the sea star Asterias rubens in the brackish western Baltic Sea. Helgoland Marine Research, 69, 169-175.
Charlesworth, B. (1998). Measures of divergence between populations and the effect of forces that reduce variability. Molecular Biology and Evolution, 15, 538-543.
Chown, S. L., Hodgins, K. A., Griffin, P. C., Oakeshott, J. G., Byrne, M., & Hoffmann, A. A. (2015). Biological invasions, climate change and genomics. Evolutionary Applications, 8, 23-46.
Chunco, A. J. (2014). Hybridization in a warmer world. Ecology and Evolution, 4, 2019-2031.
Cintra-Buenrostro, C. E., Reyes-Bonilla, H., & Herrero-Pérezrul, M. D. (2005). Oceanographic conditions and diversity of sea stars (Echinodermata: Asteroidea) in the Gulf of California, México. Revista de Biologia Tropical, 53(Suppl 3), 245-261.
Clark, A. M., & Downey, M. E. (1992). Starfishes of the Atlantic. Chapman & Hall.
Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). Kuenm: An R package for detailed development of ecological niche models using maxent. PeerJ, 7, e6281.
Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23, 3133-3157.
Dobzhansky, T. (1934). Studies on hybrid sterility. Cell and Tissue Research, 21, 169-223.
Eaton, D. A. R., & Overcast, I. (2020). Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics, 36(8), 2592-2594.
El Ayari, T., Trigui El Menif, N., Hamer, B., Cahill, A. E., & Bierne, N. (2019). The hidden side of a major marine biogeographic boundary: A wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity, 122, 770-784.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611-2620.
Fenberg, P. B., Posbic, K., & Hellberg, M. E. (2014). Historical and recent processes shaping the geographic range of a rocky intertidal gastropod: Phylogeography, ecology, and habitat availability. Ecology and Evolution, 4, 3244-3255.
Feng, X., Park, D. S., Liang, Y., Pandey, R., & Papeş, M. (2019). Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 9, 10365-10376.
Ferguson, J. C. (1963a). An autoradiographic study of the distribution of ingested nutrients in the starfish, Asterias forbesi. American Zoologist, 3, 524.
Ferguson, J. C. (1963b). The physiological mechanisms of nutrient transport in the starfish, Asterias forbesi. Cornell Univ.
Ferguson, J. C. (1967). Utilization of dissolved exogenous nutrients by the starfishes, Asterias forbesi and Henricia sanguinolenta. The Biological Bulletin, 132, 161-173.
Fitzpatrick, S. W., Bradburd, G. S., Kremer, C. T., Salerno, P. E., Angeloni, L. M., & Funk, W. C. (2020). Genomic and fitness consequences of genetic rescue in wild populations. Current Biology: CB, 30, 517-522.e5.
Forester, B. R., Lasky, J. R., Wagner, H. H., & Urban, D. L. (2018). Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Molecular Ecology, 27, 2215-2233.
Fraïsse, C., Gunnarsson, P. A., Roze, D., Bierne, N., & Welch, J. J. (2016). The genetics of speciation: Insights from Fisher's geometric model. Evolution, 70, 1450-1464.
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies (B O'Meara, ed). Methods in Ecology and Evolution, 6, 925-929.
Frichot, E., Schoville, S. D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30, 1687-1699.
Garroway, C. J., Bowman, J., Cascaden, T. J., Holloway, G. L., Mahan, C. G., Malcolm, J. R., Steele, M. A., Turner, G., & Wilson, P. J. (2010). Climate change induced hybridization in flying squirrels. Global Change Biology, 16, 113-121.
GBIF.org. (2021a). GBIF Occurrence Download. Accessed 20 September 2021. https://doi.org/10.15468/dl.eapfp4
GBIF.org. (2021b). GBIF Occurrence Download. Accessed 08 December 2021. https://doi.org/10.15468/dl.fw5cj9
Gosset, C. C., & Bierne, N. (2013). Differential introgression from a sister species explains high F(ST) outlier loci within a mussel species. Journal of Evolutionary Biology, 26, 14-26.
Hansen, M. M. (2023). Prepping for climate change by introgressive hybridization. Trends in Genetics, 39, 524-525.
Hare, M. P., Guenther, C., & Fagan, W. F. (2005). Nonrandom larval dispersal can steepen marine clines. Evolution, 59, 2509-2517.
Harley, C. D. G., & Helmuth, B. S. T. (2003). Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnology and Oceanography, 48, 1498-1508.
Harper, F. M., Addison, J. A., & Hart, M. W. (2007). Introgression versus immigration in hybridizing high-dispersal echinoderms. Evolution, 61, 2410-2418.
Harper, F. M., & Hart, M. W. (2005). Gamete compatibility and sperm competition affect paternity and hybridization between sympatric Asterias Sea stars. The Biological Bulletin, 209, 113-126.
Harper, F. M., & Hart, M. W. (2007). Morphological and phylogenetic evidence for hybridization and introgression in a sea star secondary contact zone. Invertebrate Biology, 126, 373-384.
Harrison, R. G., & Larson, E. L. (2014). Hybridization, introgression, and the nature of species boundaries. The Journal of Heredity, 105(Suppl 1), 795-809.
Harrison, R. G., & Larson, E. L. (2016). Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Molecular Ecology, 25, 2454-2466.
Held, M. B. E., & Harley, C. D. G. (2009). Responses to low salinity by the sea star Pisaster ochraceus from high- and low-salinity populations. Invertebrate biology: a quarterly journal of the American Microscopical Society and the Division of Invertebrate Zoology/ASZ, 128, 381-390.
Hilbish, T. J., Lima, F. P., Brannock, P. M., Fly, E. K., Rognstad, R. L., & Wethey, D. S. (2012). Change and stasis in marine hybrid zones in response to climate warming. Journal of Biogeography, 39, 676-687.
Howard, D. J., Waring, G. L., Tibbets, C. A., & Gregory, P. G. (1993). Survival of hybrids in a mosaic hybrid zone. Evolution, 47, 789-800.
Ilves, K. L., Huang, W. E. N., Wares, J. P., & Hickerson, M. J. (2010). Colonization and/or mitochondrial selective sweeps across the North Atlantic intertidal assemblage revealed by multi-taxa approximate Bayesian computation. Molecular Ecology, 19, 4505-4519.
Ingolfsson, A. (1992). The origin of the rocky shore fauna of Iceland and the Canadian maritimes. Journal of Biogeography, 19, 705-712.
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801-1806.
Jiménez, L., Soberón, J., Christen, J. A., & Soto, D. (2019). On the problem of modeling a fundamental niche from occurrence data. Ecological Modelling, 397, 74-83.
Kass, J. M., Pinilla-Buitrago, G. E., Paz, A., Johnson, B. A., Grisales-Betancur, V., Meenan, S. I., Attali, D., Broennimann, O., Galante, P. J., Maitner, B. S., & Owens, H. L. (2023). wallace 2: A shiny app for modeling species niches and distributions redesigned to facilitate expansion via module contributions. Ecography, 3, e06547.
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
Kelly, R. P., & Palumbi, S. R. (2010). Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS One, 5, e8594.
Kofler, R., Pandey, R. V., & Schlötterer, C. (2011). PoPoolation2: Identifying differentiation between populations using sequencing of pooled DNA samples (Pool-seq). Bioinformatics, 27, 3435-3436.
Kruuk, L. E., Baird, S. J., Gale, K. S., & Barton, N. H. (1999). A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics, 153, 1959-1971.
Lawrence, J. M., & Lane, J. M. (1982). The utilization of nutrients by post-metamorphic echinoderms. In M. Jangoux & J. M. Lawrence (Eds.), Echinoderm Nutrition. CRC press.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754-1760.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.
Ling, S. D., Johnson, C. R., Mundy, C. N., Morris, A., & Ross, D. J. (2012). Hotspots of exotic free-spawning sex: Man-made environment facilitates success of an invasive seastar. The Journal of Applied Ecology, 49, 733-741.
Loder, J. W. (1998). The coastal ocean off northeastern North America : A large-scale view. The Sea, 11, 105-138.
Loosanoff, V. L. (1964). Variations in time and intensity of setting of the starfish, Asterias forbesi, in Long Island Sound during a twenty-five year period. The Biological bulletin, 126, 423-439.
Lozier, J. D. (2014). Revisiting comparisons of genetic diversity in stable and declining species: Assessing genome-wide polymorphism in north American bumble bees using RAD sequencing. Molecular Ecology, 23, 788-801.
Lubchenco, J., & Menge, B. A. (1978). Community development and persistence in a low rocky intertidal zone. Ecological Monographs, 48, 67-94.
MacKenzie, C. L., Jr., & Pikanowski, R. (1999). A decline in starfish, Asterias forbesi, abundance and a concurrent increase in northern quahog, Mercenaria, abundance and landings in the northeastern United States. Marine Fisheries Review, 61, 66-71.
McFarland, R. (1911). A history of the New England fisheries: With maps. University of Pennsylvania.
Menge, B. A. (1979). Coexistence between the seastars Asterias vulgaris and A. Forbes; in a heterogeneous environment: A non-equilibrium explanation. Oecologia, 41, 245-272.
Menge, B. A. (1986). A preliminary study of the reproductive ecology of the seastars Asterias vulgaris and A. forbesi in New England. Bulletin of marine science, 39, 467-476.
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17, 240-248.
Moore, W. S., & Price, J. T. (1993). Nature of selection in the northern flicker hybrid zone and its implications for speciation theory. Hybrid Zones and the Evolutionary Process, 196, 225.
Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models (J McPherson, ed). Methods in Ecology and Evolution, 5, 1198-1205.
Nielsen, E. E., Hansen, M. M., Ruzzante, D. E., Meldrup, D., & Grønkjaer, P. (2003). Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Molecular Ecology, 12, 1497-1508.
Nikula, R., Strelkov, P., & Väinölä, R. (2008). A broad transition zone between an inner Baltic hybrid swarm and a pure North Sea subspecies of Macoma balthica (Mollusca, Bivalvia). Molecular Ecology, 17, 1505-1522.
Nosil, P. (2012). Ecological Speciation. OUP Oxford.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, P., Legendre, D., & McGlinn, P. R. (2020). Vegan: Community ecology package. https. cran. r-project. org/package= vegan.
Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100, 65-75.
Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547-572.
Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., le Bris, A., Mills, K. E., Nye, J. A., Record, N. R., Scannell, H. A., Scott, J. D., Sherwood, G. D., & Thomas, A. C. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science, 350, 809-812.
Petkova, D., Novembre, J., & Stephens, M. (2016). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48, 94-100.
Petraitis, P. S., & Dudgeon, S. R. (2020). Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic. Communications Biology, 3, 591.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of maxent. Ecography, 40, 887-893.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
Prates, I., Penna, A., Rodrigues, M. T., & Carnaval, A. C. (2018). Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecology and Evolution, 8, 11932-11944.
Pringle, J. M., Blakeslee, A. M. H., Byers, J. E., & Roman, J. (2011). Asymmetric dispersal allows an upstream region to control population structure throughout a species' range. Proceedings of the National Academy of Sciences of the United States of America, 108, 15288-15293.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. (2015). A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24, 4348-4370.
Rieseberg, L. H., Archer, M. A., & Wayne, R. K. (1999). Transgressive segregation, adaptation and speciation. Heredity, 83(Pt 4), 363-372.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., et al. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299-3302.
Ryan, S. F., Fontaine, M. C., Scriber, J. M., Pfrender, M. E., O'Neil, S. T., & Hellmann, J. J. (2017). Patterns of divergence across the geographic and genomic landscape of a butterfly hybrid zone associated with a climatic gradient. Molecular Ecology, 26, 4725-4742.
Salisbury, J. E., & Jönsson, B. F. (2018). Rapid warming and salinity changes in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean acidification. Biogeochemistry, 141, 401-418.
Sameoto, J. A., & Metaxas, A. (2008). Interactive effects of haloclines and food patches on the vertical distribution of 3 species of temperate invertebrate larvae. Journal of Experimental Marine Biology and Ecology, 367, 131-141.
Sanford, E., & Kelly, M. W. (2011). Local adaptation in marine invertebrates. Annual Review of Marine Science, 3, 509-535.
Schneemann, H., de Sanctis, B., Roze, D., Bierne, N., & Welch, J. J. (2020). The geometry and genetics of hybridization. Evolution, 74, 2575-2590.
Schopf, T. J. M., & Murphy, L. S. (1973). Protein polymorphism of the hybridizing sea stars Asterias forbesi and Asterias vulgaris and implications for their evolution. The Biological Bulletin, 145, 589-597.
Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198-207.
Simon, A., Bierne, N., & Welch, J. J. (2018). Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns. Evolution Letters, 2, 472-498.
Starkey DJ, Heidbrink I (2009) A history of the North Atlantic fisheries.
Stephens, G. C., & Schinske, R. A. (1961). Uptake of amino acids by marine invertebrates. Limnology and Oceanography, 6, 175-181.
Svedin, N., Wiley, C., Veen, T., Gustafsson, L., & Qvarnström, A. (2008). Natural and sexual selection against hybrid flycatchers. Proceedings of the Royal Society B: Biological Sciences, 275, 735-744.
Taylor, S. A., Larson, E. L., & Harrison, R. G. (2015). Hybrid zones: Windows on climate change. Trends in Ecology & Evolution, 30, 398-406.
Thomas, C. D., Franco, A. M. A., & Hill, J. K. (2006). Range retractions and extinction in the face of climate warming. Trends in Ecology & Evolution, 21, 415-416.
Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., Hübner, S., Heredia, S. M., Hahn, M. A., Caseys, C., Bock, D. G., & Rieseberg, L. H. (2016). Hybridization and extinction. Evolutionary Applications, 9, 892-908.
Ünsal Karhan, S., Kalkan, E., & Baki Yokeş, M. (2008). First record of the Atlantic starfish, Asterias rubens (Echinodermata: Asteroidea) from the Black Sea. Marine Biodiversity Records, 1, e63.
Vallejo-Marín, M., & Hiscock, S. J. (2016). Hybridization and hybrid speciation under global change. The New Phytologist, 211, 1170-1187.
Waltari, E., & Hickerson, M. J. (2013). Late Pleistocene species distribution modelling of North Atlantic intertidal invertebrates (C McClain, ed). Journal of Biogeography, 40, 249-260.
Wang, H., Vieira, F. G., Crawford, J. E., Chu, C., & Nielsen, R. (2017). Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Research, 27, 1029-1038.
Wares, J. P. (2001). Biogeography of Asterias: North Atlantic climate change and speciation. The Biological Bulletin, 201, 95-103.
Wares, J. P., & Cunningham, C. W. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 55, 2455-2469.
Wenger, S. J., & Olden, J. D. (2012). Assessing transferability of ecological models: An underappreciated aspect of statistical validation: Model transferability. Methods in Ecology and Evolution, 3, 260-267.
Willis, B. L., van Oppen, M. J. H., Miller, D. J., Vollmer, S. V., & Ayre, D. J. (2006). The role of hybridization in the evolution of reef corals (Vol. 37, pp. 489-517). Annual Review of Ecology, Evolution, and Systematics.
Worley, E. K., & Franz, D. R. (1983). A comparative study of selected skeletal structures in the sea stars Asterias forbesi (Desor), A. vulgaris Verrill, and A. rubens L., with a discussion of possible relationships. Proceedings of the Biological Society of Washington, 96, 524-547.
Xuereb, A., Kimber, C. M., Curtis, J. M. R., Bernatchez, L., & Fortin, M.-J. (2018). Putatively adaptive genetic variation in the giant California Sea cucumber (Parastichopus californicus) as revealed by environmental association analysis of restriction-site associated DNA sequencing data. Molecular Ecology, 27, 5035-5048.
Zardi, G. I., Nicastro, K. R., Canovas, F., Costa, J. F., Serrao, E. A., & Pearson, G. A. (2011). Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zone. PLoS One, 6(6), e19402.