Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-06-00084
Czech Health Research Council
PubMed
36676572
PubMed Central
PMC9866530
DOI
10.3390/ma16020834
PII: ma16020834
Knihovny.cz E-zdroje
- Klíčová slova
- indentation creep, microindentation, polymers, tensile creep, viscoelasticity,
- Publikační typ
- časopisecké články MeSH
We compared the results of various microscale indentation creep (microcreep) measurements with macroscale tensile creep (macrocreep) measurements of three common polymers: high-density polyethylene (PE), polypropylene (PP), and polystyrene (PS). The main objective was to verify if the short-term microcreep experiments could predict long-term macrocreep behavior of the selected polymers, whose properties ranged from very soft and ductile (PE) to very hard and brittle (PS). The second objective was to compare several creep predictive schemes: the empirical power law model (PL) and several types of phenomenological elasto-visco-plastic models (EVP). In order to facilitate this task, we developed a universal program package named MCREEP, which fits PL and EVP models to both tensile and indentation creep data. All experimental results and theoretical predictions documented that: (i) regardless of the creep experiment type, both micro- and macrocreep resistance increased in the following order: PE < PP < PS, (ii) the short-term microcreep experiments could be used to predict qualitatively the long-term macrocreep behavior, and (iii) the simple empirical power law model yielded better predictions of long-term creep behavior than the more sophisticated elasto-visco-plastic models.
Zobrazit více v PubMed
Meyers M.A., Chawla K.K. Mechanical Behavior of Materials. Cambridge University Press; Cambridge, NY, USA: 2009. Creep and Superplasticity.
Michaeli W., editor. Training in Plastics Technology: A Text- and Workbook. Hanser; Munich, Germany: 1995. Time-Dependent Behavior of Plastics. SPE Books.
Turner S. Creep in Glassy Polymers. In: Haward R.N., editor. The Physics of Glassy Polymers. Springer; Dordrecht, The Netherlands: 1973. pp. 223–278. (Materials Science Series).
Findley W.N., Lai J.S., Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover Publications; New York, NY, USA: 1976.
McCrum N.G., Buckley C.P., Bucknall C.B. Principles of Polymer Engineering. Oxford University Press; Oxford, UK: New York, NY, USA: 1997. Viscoelasticity.
Menčík J., He L.H., Němeček J. Characterization of Viscoelastic-Plastic Properties of Solid Polymers by Instrumented Indentation. Polym. Test. 2011;30:101–109. doi: 10.1016/j.polymertesting.2010.11.006. DOI
Slouf M., Henning S. Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2022. Micromechanical Properties; pp. 1–50.
Bower A.F., Fleck N.A., Needleman A., Ogbonna N. Indentation of a Power Law Creeping Solid. Proc. Math. Phys. Sci. 1993;441:97–124.
Su C., Herbert E.G., Sohn S., LaManna J.A., Oliver W.C., Pharr G.M. Measurement of Power-Law Creep Parameters by Instrumented Indentation Methods. J. Mech. Phys. Solids. 2013;61:517–536. doi: 10.1016/j.jmps.2012.09.009. DOI
Cordova M.E., Shen Y.-L. Indentation versus Uniaxial Power-Law Creep: A Numerical Assessment. J. Mater. Sci. 2015;50:1394–1400. doi: 10.1007/s10853-014-8699-9. DOI
Ginder R.S., Pharr G.M. Characterization of Power-Law Creep in the Solid-Acid CsHSO4 via Nanoindentation. J. Mater. Res. 2019;34:1130–1137. doi: 10.1557/jmr.2018.505. DOI
Thom C.A., Goldsby D.L. Nanoindentation Studies of Plasticity and Dislocation Creep in Halite. Geosciences. 2019;9:79. doi: 10.3390/geosciences9020079. DOI
Xiao X., Yu L. Effect of Primary Creep on the Relationship between Indentation and Uniaxial Creep: A Theoretical Model. Int. J. Solids Struct. 2020;206:114–123. doi: 10.1016/j.ijsolstr.2020.09.017. DOI
Dorner D., Eggeler G. Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing. Mater. Sci. Eng. A. 2003;357:346–354. doi: 10.1016/S0921-5093(03)00205-3. DOI
Horský J., Kolařík J., Fambri L. Structure and Mechanical Properties of Composites of Poly(6-Hexanelactam) Combining Solid Tribological Additives and Reinforcing Components. Macromol. Mater. Eng. 2004;289:324–333. doi: 10.1002/mame.200300310. DOI
Liu H., Chen Y., Tang Y., Wei S., Niu G. The Microstructure, Tensile Properties, and Creep Behavior of as-Cast Mg–(1–10)%Sn Alloys. J. Alloys Compd. 2007;440:122–126. doi: 10.1016/j.jallcom.2006.09.024. DOI
Lu H., Wang B., Ma J., Huang G., Viswanathan H. Measurement of Creep Compliance of Solid Polymers by Nanoindentation. Mech. Time Depend. Mater. 2003;7:189–207. doi: 10.1023/B:MTDM.0000007217.07156.9b. DOI
Peng G., Ma Y., Feng Y., Huan Y., Qin C., Zhang T. Nanoindentation Creep of Nonlinear Viscoelastic Polypropylene. Polym. Test. 2015;43:38–43. doi: 10.1016/j.polymertesting.2015.02.006. DOI
Ward I.M., Sweeney J. Mechanical Properties of Solid Polymers. Wiley; Chichester, UK: 2013. Non-Linear Viscoelastic Behaviour.
Dixon-Stubbs P.J. Creep Behaviour of Polyethylene and Polypropylene. J. Mater. Sci. 1981;16:389–396. doi: 10.1007/BF00738628. DOI
Liu Y.J., Zhao B., Xu B.X., Yue Z.F. Experimental and Numerical Study of the Method to Determine the Creep Parameters from the Indentation Creep Testing. Mater. Sci. Eng. A. 2007;456:103–108. doi: 10.1016/j.msea.2006.11.098. DOI
Duan X., Yuan H., Tang W., He J., Guan X. A Phenomenological Primary–Secondary–Tertiary Creep Model for Polymer-Bonded Composite Materials. Polymers. 2021;13:2353. doi: 10.3390/polym13142353. PubMed DOI PMC
Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity: An Introduction. Springer; New York, NY, USA: 2008. Characteristics, Applications and Properties of Polymers.
Kolarik J., Fambri L., Pegoretti A., Penati A., Goberti P. Prediction of the Creep of Heterogeneous Polymer Blends: Rubber-Toughened Polypropylene/Poly(Styrene-Co-Acrylonitrile) Polym. Eng. Sci. 2002;42:161–169. doi: 10.1002/pen.10937. DOI
Garbella R., Wachter J., Wendorff J. Influence of Structural Defects on Viscoelastic Properties of Poly(Propylene) Prog. Colloid. Polym. Sci. 1985;71:164–172.
Nutting P.G. A Study of Elastic Viscous Deformation. Proc. ASTM. 1921;21:1162–1171.
Rees D.W.A. Nutting Creep in Polymer Composites. J. Mater. Process. Technol. 2003;143–144:164–170. doi: 10.1016/S0924-0136(03)00399-6. DOI
Ward I.M., Sweeney J. Mechanical Properties of Solid Polymers. Wiley; Chichester, UK: 2013. Linear Viscoelastic Behaviour.
Semenov A., Melnikov B. Interactive Rheological Modeling in Elasto-Visco-Plastic Finite Element Analysis. Procedia Eng. 2016;165:1748–1756. doi: 10.1016/j.proeng.2016.11.918. DOI
Oyen M.L. Spherical Indentation Creep Following Ramp Loading. J. Mater. Res. 2005;20:2094–2100. doi: 10.1557/JMR.2005.0259. DOI
Oyen M.L. Analytical Techniques for Indentation of Viscoelastic Materials. Philos. Mag. 2006;86:5625–5641. doi: 10.1080/14786430600740666. DOI
Oyen M.L. Sensitivity of Polymer Nanoindentation Creep Measurements to Experimental Variables. Acta Mater. 2007;55:3633–3639. doi: 10.1016/j.actamat.2006.12.031. DOI
Menčík J., He L.H., Swain M.V. Determination of Viscoelastic–Plastic Material Parameters of Biomaterials by Instrumented Indentation. J. Mech. Behav. Biomed. Mater. 2009;2:318–325. doi: 10.1016/j.jmbbm.2008.09.002. PubMed DOI
Fischer-Cripps A.C. Nanoindentation. Springer; New York, NY, USA: 2011. Contact Mechanics. (Mechanical Engineering Series).
Baltá-Calleja F.J., Fakirov S. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. Microhardness Determination in Polymeric Materials. (Cambridge Solid State Science Series).
Baltá-Calleja F.J., Bassett D.C. Microindentation Hardness of Oriented Chain-Extended Polyethylene: Microindentation Hardness. J. Polym. Sci. C Polym. Symp. 1977;58:157–167. doi: 10.1002/polc.5070580112. DOI
Flores A., Ania F., Baltá-Calleja F.J. From the Glassy State to Ordered Polymer Structures: A Microhardness Study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI
Slouf M., Vackova T., Nevoralova M., Pokorny D. Micromechanical Properties of One-Step and Sequentially Crosslinked UHMWPEs for Total Joint Replacements. Polym. Test. 2015;41:191–197. doi: 10.1016/j.polymertesting.2014.12.003. DOI
Slouf M., Vacková T., Zhigunov A., Sikora A., Piorkowska E. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part. B. 2016;55:393–410. doi: 10.1080/00222348.2016.1153402. DOI
Lee E.H., Radok J.R.M. The Contact Problem for Viscoelastic Bodies. J. Appl. Mech. 1960;27:438–444. doi: 10.1115/1.3644020. DOI
Johnson K.L. Contact Mechanics. Cambridge University Press; Cambridge, UK: 1992.
Sakai M., Shimizu S. Indentation Rheometry for Glass-Forming Materials. J. Non Cryst. Solids. 2001;282:236–247. doi: 10.1016/S0022-3093(01)00316-7. DOI
Kolarik J., Pegoretti A. Indentation Creep of Heterogeneous Blends of Poly(Ethylene Terephthalate)/Impact Modifier. Polym. Test. 2004;23:113–121. doi: 10.1016/S0142-9418(03)00069-2. DOI
Beake B.D., Bell G.A., Brostow W., Chonkaew W. Nanoindentation Creep and Glass Transition Temperatures in Polymers. Polym. Int. 2007;56:773–778. doi: 10.1002/pi.2207. DOI
Nakazato Y., Zhu S., Usuki A., Kato M. Analysis and Prediction of Creep Viscoelasticity in Nylon 6 Clay Hybrid Nanocomposites. J. Solid Mech. Mater. Eng. 2010;4:856–863. doi: 10.1299/jmmp.4.856. DOI
Wang Y., Shang L., Zhang P., Yan X., Zhang K., Dou S., Zhao J., Li Y. Measurement of Viscoelastic Properties for Polymers by Nanoindentation. Polym. Test. 2020;83:106353. doi: 10.1016/j.polymertesting.2020.106353. DOI
Trzepiecinski T., Lemu H.G. A Three-Dimensional Elastic-Plastic Contact Analysis of Vickers Indenter on a Deep Drawing Quality Steel Sheet. Materials. 2019;12:2153. doi: 10.3390/ma12132153. PubMed DOI PMC
Balta-Calleja F.J., Fakirov S. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. (Cambridge Solid State Science Series).
Urdan T.C. Statistics in Plain English. 4th ed. Routledge, Taylor & Francis Group; New York, NY, USA: 2017.
Celauro C., Fecarotti C., Pirrotta A., Collop A.C. Experimental Validation of a Fractional Model for Creep/Recovery Testing of Asphalt Mixtures. Constr. Build. Mater. 2012;36:458–466. doi: 10.1016/j.conbuildmat.2012.04.028. DOI
Gao Y., Zhao B., Yin D., Yuan L. A General Fractional Model of Creep Response for Polymer Materials: Simulation and Model Comparison. J. Appl. Polym. Sci. 2022;139:51577. doi: 10.1002/app.51577. DOI