Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers

. 2023 Jan 15 ; 16 (2) : . [epub] 20230115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36676572

Grantová podpora
NU21-06-00084 Czech Health Research Council

We compared the results of various microscale indentation creep (microcreep) measurements with macroscale tensile creep (macrocreep) measurements of three common polymers: high-density polyethylene (PE), polypropylene (PP), and polystyrene (PS). The main objective was to verify if the short-term microcreep experiments could predict long-term macrocreep behavior of the selected polymers, whose properties ranged from very soft and ductile (PE) to very hard and brittle (PS). The second objective was to compare several creep predictive schemes: the empirical power law model (PL) and several types of phenomenological elasto-visco-plastic models (EVP). In order to facilitate this task, we developed a universal program package named MCREEP, which fits PL and EVP models to both tensile and indentation creep data. All experimental results and theoretical predictions documented that: (i) regardless of the creep experiment type, both micro- and macrocreep resistance increased in the following order: PE < PP < PS, (ii) the short-term microcreep experiments could be used to predict qualitatively the long-term macrocreep behavior, and (iii) the simple empirical power law model yielded better predictions of long-term creep behavior than the more sophisticated elasto-visco-plastic models.

Zobrazit více v PubMed

Meyers M.A., Chawla K.K. Mechanical Behavior of Materials. Cambridge University Press; Cambridge, NY, USA: 2009. Creep and Superplasticity.

Michaeli W., editor. Training in Plastics Technology: A Text- and Workbook. Hanser; Munich, Germany: 1995. Time-Dependent Behavior of Plastics. SPE Books.

Turner S. Creep in Glassy Polymers. In: Haward R.N., editor. The Physics of Glassy Polymers. Springer; Dordrecht, The Netherlands: 1973. pp. 223–278. (Materials Science Series).

Findley W.N., Lai J.S., Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover Publications; New York, NY, USA: 1976.

McCrum N.G., Buckley C.P., Bucknall C.B. Principles of Polymer Engineering. Oxford University Press; Oxford, UK: New York, NY, USA: 1997. Viscoelasticity.

Menčík J., He L.H., Němeček J. Characterization of Viscoelastic-Plastic Properties of Solid Polymers by Instrumented Indentation. Polym. Test. 2011;30:101–109. doi: 10.1016/j.polymertesting.2010.11.006. DOI

Slouf M., Henning S. Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2022. Micromechanical Properties; pp. 1–50.

Bower A.F., Fleck N.A., Needleman A., Ogbonna N. Indentation of a Power Law Creeping Solid. Proc. Math. Phys. Sci. 1993;441:97–124.

Su C., Herbert E.G., Sohn S., LaManna J.A., Oliver W.C., Pharr G.M. Measurement of Power-Law Creep Parameters by Instrumented Indentation Methods. J. Mech. Phys. Solids. 2013;61:517–536. doi: 10.1016/j.jmps.2012.09.009. DOI

Cordova M.E., Shen Y.-L. Indentation versus Uniaxial Power-Law Creep: A Numerical Assessment. J. Mater. Sci. 2015;50:1394–1400. doi: 10.1007/s10853-014-8699-9. DOI

Ginder R.S., Pharr G.M. Characterization of Power-Law Creep in the Solid-Acid CsHSO4 via Nanoindentation. J. Mater. Res. 2019;34:1130–1137. doi: 10.1557/jmr.2018.505. DOI

Thom C.A., Goldsby D.L. Nanoindentation Studies of Plasticity and Dislocation Creep in Halite. Geosciences. 2019;9:79. doi: 10.3390/geosciences9020079. DOI

Xiao X., Yu L. Effect of Primary Creep on the Relationship between Indentation and Uniaxial Creep: A Theoretical Model. Int. J. Solids Struct. 2020;206:114–123. doi: 10.1016/j.ijsolstr.2020.09.017. DOI

Dorner D., Eggeler G. Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing. Mater. Sci. Eng. A. 2003;357:346–354. doi: 10.1016/S0921-5093(03)00205-3. DOI

Horský J., Kolařík J., Fambri L. Structure and Mechanical Properties of Composites of Poly(6-Hexanelactam) Combining Solid Tribological Additives and Reinforcing Components. Macromol. Mater. Eng. 2004;289:324–333. doi: 10.1002/mame.200300310. DOI

Liu H., Chen Y., Tang Y., Wei S., Niu G. The Microstructure, Tensile Properties, and Creep Behavior of as-Cast Mg–(1–10)%Sn Alloys. J. Alloys Compd. 2007;440:122–126. doi: 10.1016/j.jallcom.2006.09.024. DOI

Lu H., Wang B., Ma J., Huang G., Viswanathan H. Measurement of Creep Compliance of Solid Polymers by Nanoindentation. Mech. Time Depend. Mater. 2003;7:189–207. doi: 10.1023/B:MTDM.0000007217.07156.9b. DOI

Peng G., Ma Y., Feng Y., Huan Y., Qin C., Zhang T. Nanoindentation Creep of Nonlinear Viscoelastic Polypropylene. Polym. Test. 2015;43:38–43. doi: 10.1016/j.polymertesting.2015.02.006. DOI

Ward I.M., Sweeney J. Mechanical Properties of Solid Polymers. Wiley; Chichester, UK: 2013. Non-Linear Viscoelastic Behaviour.

Dixon-Stubbs P.J. Creep Behaviour of Polyethylene and Polypropylene. J. Mater. Sci. 1981;16:389–396. doi: 10.1007/BF00738628. DOI

Liu Y.J., Zhao B., Xu B.X., Yue Z.F. Experimental and Numerical Study of the Method to Determine the Creep Parameters from the Indentation Creep Testing. Mater. Sci. Eng. A. 2007;456:103–108. doi: 10.1016/j.msea.2006.11.098. DOI

Duan X., Yuan H., Tang W., He J., Guan X. A Phenomenological Primary–Secondary–Tertiary Creep Model for Polymer-Bonded Composite Materials. Polymers. 2021;13:2353. doi: 10.3390/polym13142353. PubMed DOI PMC

Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity: An Introduction. Springer; New York, NY, USA: 2008. Characteristics, Applications and Properties of Polymers.

Kolarik J., Fambri L., Pegoretti A., Penati A., Goberti P. Prediction of the Creep of Heterogeneous Polymer Blends: Rubber-Toughened Polypropylene/Poly(Styrene-Co-Acrylonitrile) Polym. Eng. Sci. 2002;42:161–169. doi: 10.1002/pen.10937. DOI

Garbella R., Wachter J., Wendorff J. Influence of Structural Defects on Viscoelastic Properties of Poly(Propylene) Prog. Colloid. Polym. Sci. 1985;71:164–172.

Nutting P.G. A Study of Elastic Viscous Deformation. Proc. ASTM. 1921;21:1162–1171.

Rees D.W.A. Nutting Creep in Polymer Composites. J. Mater. Process. Technol. 2003;143–144:164–170. doi: 10.1016/S0924-0136(03)00399-6. DOI

Ward I.M., Sweeney J. Mechanical Properties of Solid Polymers. Wiley; Chichester, UK: 2013. Linear Viscoelastic Behaviour.

Semenov A., Melnikov B. Interactive Rheological Modeling in Elasto-Visco-Plastic Finite Element Analysis. Procedia Eng. 2016;165:1748–1756. doi: 10.1016/j.proeng.2016.11.918. DOI

Oyen M.L. Spherical Indentation Creep Following Ramp Loading. J. Mater. Res. 2005;20:2094–2100. doi: 10.1557/JMR.2005.0259. DOI

Oyen M.L. Analytical Techniques for Indentation of Viscoelastic Materials. Philos. Mag. 2006;86:5625–5641. doi: 10.1080/14786430600740666. DOI

Oyen M.L. Sensitivity of Polymer Nanoindentation Creep Measurements to Experimental Variables. Acta Mater. 2007;55:3633–3639. doi: 10.1016/j.actamat.2006.12.031. DOI

Menčík J., He L.H., Swain M.V. Determination of Viscoelastic–Plastic Material Parameters of Biomaterials by Instrumented Indentation. J. Mech. Behav. Biomed. Mater. 2009;2:318–325. doi: 10.1016/j.jmbbm.2008.09.002. PubMed DOI

Fischer-Cripps A.C. Nanoindentation. Springer; New York, NY, USA: 2011. Contact Mechanics. (Mechanical Engineering Series).

Baltá-Calleja F.J., Fakirov S. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. Microhardness Determination in Polymeric Materials. (Cambridge Solid State Science Series).

Baltá-Calleja F.J., Bassett D.C. Microindentation Hardness of Oriented Chain-Extended Polyethylene: Microindentation Hardness. J. Polym. Sci. C Polym. Symp. 1977;58:157–167. doi: 10.1002/polc.5070580112. DOI

Flores A., Ania F., Baltá-Calleja F.J. From the Glassy State to Ordered Polymer Structures: A Microhardness Study. Polymer. 2009;50:729–746. doi: 10.1016/j.polymer.2008.11.037. DOI

Slouf M., Vackova T., Nevoralova M., Pokorny D. Micromechanical Properties of One-Step and Sequentially Crosslinked UHMWPEs for Total Joint Replacements. Polym. Test. 2015;41:191–197. doi: 10.1016/j.polymertesting.2014.12.003. DOI

Slouf M., Vacková T., Zhigunov A., Sikora A., Piorkowska E. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part. B. 2016;55:393–410. doi: 10.1080/00222348.2016.1153402. DOI

Lee E.H., Radok J.R.M. The Contact Problem for Viscoelastic Bodies. J. Appl. Mech. 1960;27:438–444. doi: 10.1115/1.3644020. DOI

Johnson K.L. Contact Mechanics. Cambridge University Press; Cambridge, UK: 1992.

Sakai M., Shimizu S. Indentation Rheometry for Glass-Forming Materials. J. Non Cryst. Solids. 2001;282:236–247. doi: 10.1016/S0022-3093(01)00316-7. DOI

Kolarik J., Pegoretti A. Indentation Creep of Heterogeneous Blends of Poly(Ethylene Terephthalate)/Impact Modifier. Polym. Test. 2004;23:113–121. doi: 10.1016/S0142-9418(03)00069-2. DOI

Beake B.D., Bell G.A., Brostow W., Chonkaew W. Nanoindentation Creep and Glass Transition Temperatures in Polymers. Polym. Int. 2007;56:773–778. doi: 10.1002/pi.2207. DOI

Nakazato Y., Zhu S., Usuki A., Kato M. Analysis and Prediction of Creep Viscoelasticity in Nylon 6 Clay Hybrid Nanocomposites. J. Solid Mech. Mater. Eng. 2010;4:856–863. doi: 10.1299/jmmp.4.856. DOI

Wang Y., Shang L., Zhang P., Yan X., Zhang K., Dou S., Zhao J., Li Y. Measurement of Viscoelastic Properties for Polymers by Nanoindentation. Polym. Test. 2020;83:106353. doi: 10.1016/j.polymertesting.2020.106353. DOI

Trzepiecinski T., Lemu H.G. A Three-Dimensional Elastic-Plastic Contact Analysis of Vickers Indenter on a Deep Drawing Quality Steel Sheet. Materials. 2019;12:2153. doi: 10.3390/ma12132153. PubMed DOI PMC

Balta-Calleja F.J., Fakirov S. Microhardness of Polymers. Cambridge University Press; Cambridge, UK: 2000. (Cambridge Solid State Science Series).

Urdan T.C. Statistics in Plain English. 4th ed. Routledge, Taylor & Francis Group; New York, NY, USA: 2017.

Celauro C., Fecarotti C., Pirrotta A., Collop A.C. Experimental Validation of a Fractional Model for Creep/Recovery Testing of Asphalt Mixtures. Constr. Build. Mater. 2012;36:458–466. doi: 10.1016/j.conbuildmat.2012.04.028. DOI

Gao Y., Zhao B., Yin D., Yuan L. A General Fractional Model of Creep Response for Polymer Materials: Simulation and Model Comparison. J. Appl. Polym. Sci. 2022;139:51577. doi: 10.1002/app.51577. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Impact of Acid Hydrolysis on Morphology, Rheology, Mechanical Properties, and Processing of Thermoplastic Starch

. 2025 May 11 ; 17 (10) : . [epub] 20250511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...