Effective and reproducible biosynthesis of nanogold-composite catalyst for paracetamol oxidation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000753
European Regional Development Fund
PubMed
35821312
PubMed Central
PMC9275540
DOI
10.1007/s11356-022-21868-6
PII: 10.1007/s11356-022-21868-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biosynthesis, Catalyst, Nanogold-composite, Nanoparticles, Paracetamol, Reproducibility,
- MeSH
- COVID-19 * MeSH
- kovové nanočástice * chemie MeSH
- lidé MeSH
- pandemie MeSH
- paracetamol chemie MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- paracetamol MeSH
- zlato MeSH
Pharmaceutical products are some of the most serious emergent pollutants in the environment, especially nowadays of the COVID-19 pandemic. In this study, nanogold-composite was prepared, and its catalytic activity for paracetamol degradation was investigated. Moreover, for the first time, recycled waste diatomite earth (WDE) from beer filtration was used for reproducible gold nanoparticle (Au NPs) preparation. We studied Au NPs by various psychical-chemical and analytical methods. Transmission and scanning electron microscopy were used for nanogold-composite morphology, size and shape characterization. Total element concentrations were determined using inductively coupled plasma mass and X-ray fluorescence spectrometry. X-ray powder diffraction analysis was used for crystal structure characterization of samples. Fourier transform infrared spectrometer was used to study the chemical changes before and after Au NP formation. The results revealed that the WDE served as both a reducing and a stabilizing agent for crystalline spherical 30 nm Au NPs as well as acting as a direct support matrix. The kinetics of paracetamol degradation was studied by high-performance liquid chromatography with a photodiode array detector. The conversion of paracetamol was 62% and 67% after 72 h in the absence or presence of light irradiation, respectively, with 0.0126 h-1 and 0.0148 h-1 reaction rate constants. The presented study demonstrates the successful use of waste material from the food industry for nanogold-composite preparation and its application as a promising catalyst in paracetamol removal.
Zobrazit více v PubMed
Alshammari A, Kalevaru VN (2016) Supported gold nanoparticles as promising catalysts. Catal Appl Nano-Gold Catal. 10.5772/64394
Anbalagan G, Prabakaran AR, Gunasekaran S. Spectroscopic characterization of indian standard sand. J Appl Spectrosc. 2010;77:86–94. doi: 10.1007/s10812-010-9297-5. DOI
Anders D, Alwaeli M. Application of post-filtered diatomaceous earth from brewing industry in composting. Environ Prot Eng. 2015;41:159–172. doi: 10.5277/epel50312. DOI
Cruickshanks-Boyd DW, Stevens L. The formation of cristobalite from diatomite—a dilatometric study. Aust Dent J. 1983;28:27–29. doi: 10.1111/j.1834-7819.1983.tb01064.x. PubMed DOI
Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518:3127–3150. doi: 10.1016/j.tsf.2010.01.018. DOI
Day M. COVID-19: ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ. 2020;368:m1086. doi: 10.1136/bmj.m1086. PubMed DOI
de Jesús Ruíz-Baltazar (2018) Green composite based on silver nanoparticles supported on diatomaceous Earth: kinetic adsorption models and antibacterial effect. J Clust Sci 29:509–519. 10.1007/s10876-018-1357-7
Devi TB, Ahmaruzzaman M. Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: a green and efficient approach for wastewater treatment. Chem Eng J. 2017;317:726–741. doi: 10.1016/j.cej.2017.02.082. DOI
Fernandes TA, Mendo SG, Ferreira LP, et al. Photocatalytic degradation of acetaminophen and caffeine using magnetite–hematite combined nanoparticles: kinetics and mechanisms. Environ Sci Pollut Res. 2021;28:17228–17243. doi: 10.1007/s11356-020-12016-z. PubMed DOI
Feurtet-Mazel A, Mornet S, Charron L, et al. Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ Sci Pollut Res. 2016;23:4334–4339. doi: 10.1007/s11356-015-4139-x. PubMed DOI
Hama Aziz KH, Miessner H, Mueller S, et al. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem Eng J. 2017;313:1033–1041. doi: 10.1016/j.cej.2016.10.137. DOI
He W, Liu Y, Wamer WG, Yin JJ. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal. 2014;22:49–63. doi: 10.1016/j.jfda.2014.01.004. PubMed DOI PMC
Holišová V, Urban M, Konvičková Z, et al. Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation. Sci Rep. 2021;11:1–9. doi: 10.1038/s41598-021-83460-1. PubMed DOI PMC
Holišová V, Natšinová M, Kratošová G, et al (2019a) Magnetically modified nanogold-biosilica composite as an effective catalyst for CO oxidation. Arab J Chem 12:. 10.1016/j.arabjc.2018.12.002
Holišová V, Urban M, Kolenčík M, et al (2019b) Biosilica-nanogold composite: easy-to-prepare catalyst for soman degradation. Arab J Chem 12. 10.1016/j.arabjc.2017.08.003
Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes-a review. Colloids Surf B Biointerfaces. 2014;121:474–483. doi: 10.1016/j.colsurfb.2014.05.027. PubMed DOI
Ishida T, Murayama T, Taketoshi A, Haruta M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem Rev. 2020;120:464–525. doi: 10.1021/acs.chemrev.9b00551. PubMed DOI
Jallouli N, Elghniji K, Trabelsi H, Ksibi M. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arab J Chem. 2017;10:S3640–S3645. doi: 10.1016/j.arabjc.2014.03.014. DOI
Jarošová B, Filip J, Hilscherová K, et al. Can zero-valent iron nanoparticles remove waterborne estrogens? J Environ Manage. 2015;150:387–392. doi: 10.1016/j.jenvman.2014.12.007. PubMed DOI
Jouyandeh M, Tavakoli O, Sarkhanpour R, et al. Green products from herbal medicine wastes by subcritical water treatment. J Hazard Mater. 2022;424:127294. doi: 10.1016/j.jhazmat.2021.127294. PubMed DOI
Konvičková Z, Schröfel A, Kolenčík M et al (2016) Antimicrobial bionanocomposite–from precursors to the functional material in one simple step. J Nanoparticle Res 18. 10.1007/s11051-016-3664-y
Kratošová G, Natšinová M, Holišová V, et al. Transmission electron microscopy observation of bionanogold used for preliminary N2O decomposition testing. Adv Sci Lett. 2016;22:631–636. doi: 10.1166/asl.2016.6992. DOI
Kratošová G, Holišová V, Konvičková Z et al (2019) From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol Adv 37. 10.1016/j.biotechadv.2018.11.012 PubMed
Leal NS, Yu Y, Chen Y, et al. Paracetamol is associated with a lower risk of COVID-19 infection and decreased ACE2 protein expression: a retrospective analysis. Covid. 2021;1:218–229. doi: 10.3390/covid1010018. DOI
Lee H, Lee DG (2017) A novel strategy for antimicrobial agents: silver nanoparticles
Li S-N, Wang R, Ho S-H. Algae-mediated biosystems for metallic nanoparticle production: from synthetic mechanisms to aquatic environmental applications. J Hazard Mater. 2021;420:126625. doi: 10.1016/j.jhazmat.2021.126625. PubMed DOI
Liu CP, Chen KC, Su CF, et al (2019) Revealing the active site of gold nanoparticles for the peroxidase-like activity: the determination of surface accessibility. Catalysts 9. 10.3390/catal9060517
Lupa D, Oćwieja M, Piergies N, et al. Gold nanoparticles deposited on silica microparticles - electrokinetic characteristics and application in SERS. Colloids Interface Sci Commun. 2019;33:100219. doi: 10.1016/j.colcom.2019.100219. DOI
Machado S, Stawiński W, Slonina P, et al. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environ. 2013;461–462:323–329. doi: 10.1016/j.scitotenv.2013.05.016. PubMed DOI
Martins M, Mourato C, Sanches S, et al. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. 2017;108:160–168. doi: 10.1016/j.watres.2016.10.071. PubMed DOI
Mishra M, Arukha AP, Bashir T, et al. All new faces of diatoms: potential source of nanomaterials and beyond. Front Microbiol. 2017;8:1–8. doi: 10.3389/fmicb.2017.01239. PubMed DOI PMC
Mussatto SI. Biotechnological potential of brewing industry by-products BT - biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. In: Pandey A, editor. Singh nee’ Nigam P. Netherlands, Dordrecht: Springer; 2009. pp. 313–326.
Nasr O, Mohamed O, Al-Shirbini A-S, Abdel-Wahab A-M. Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light. J Photochem Photobiol A Chem. 2019;374:185–193. doi: 10.1016/j.jphotochem.2019.01.032. DOI
Okawa Y, Yokoyama N, Sakai Y, Shiba F. Direct electron transfer biosensor for hydrogen peroxide carrying nanocomplex composed of horseradish peroxidase and Au-nanoparticle - characterization and application to bienzyme systems. Anal Chem Res. 2015;5:1–8. doi: 10.1016/j.ancr.2015.05.001. DOI
Padilla Villavicencio M, Escobedo Morales A, Ruiz Peralta M de L, et al (2020) Ibuprofen photodegradation by Ag2O and Ag/Ag2O composites under simulated visible light irradiation. Catal Letters 150:2385–2399. 10.1007/s10562-020-03139-6
Pandolfi S, Simonetti V, Ricevuti G, Chirumbolo S. Paracetamol in the home treatment of early COVID-19 symptoms: a possible foe rather than a friend for elderly patients? J Med Virol. 2021;93:5704–5706. doi: 10.1002/jmv.27158. PubMed DOI PMC
Pytlik N, Brunner E. Diatoms as potential green nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications. MRS Commun. 2018;8:322–331. doi: 10.1557/mrc.2018.34. DOI
Rabiee N, Ahmadi S, Akhavan O, Luque R (2022) Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials (Basel) 15. 10.3390/ma15051799 PubMed PMC
Salari R, Bazzaz BSF, Rajabi O, Khashyarmanesh Z (2013) New aspects of Saccharomyces cerevisiae as a novel carrier for berberine. DARU, J Pharm Sci 21. 10.1186/2008-2231-21-73 PubMed PMC
Samadi Z, Yaghmaeian K, Mortazavi-Derazkola S, et al. Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract (GnZVI@BLE) for photocatalytic reduction of hexavalent chromium. Bioorg Chem. 2021;114:105051. doi: 10.1016/j.bioorg.2021.105051. PubMed DOI
Schröfel A, Kratošová G, Bohunická M, et al. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanoparticle Res. 2011;13:3207–3216. doi: 10.1007/s11051-011-0221-6. DOI
Shakir M, Faraz M, Sherwani MA, Al-Resayes SI. Photocatalytic degradation of the paracetamol drug using lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J Lumin. 2016;176:159–167. doi: 10.1016/j.jlumin.2016.03.027. DOI
Skolotneva E, Trellu C, Cretin M, Mareev S. A 2D convection-diffusion model of anodic oxidation of organic compounds mediated by hydroxyl radicals using porous reactive electrochemical membrane. Membranes (basel) 2020;10:7–10. doi: 10.3390/membranes10050102. PubMed DOI PMC
Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts, 3rnd edn.
Sosa GL, Fernández Morantes C, Flores FM, et al. Characterization of diatomaceous earth modified by organic ligands for enhanced zinc adsorption. J Environ Chem Eng. 2019;7:103197. doi: 10.1016/j.jece.2019.103197. DOI
Taha M, Hassan M, Essa S, Tartor Y. Use of Fourier transform infrared spectroscopy (FTIR) spectroscopy for rapid and accurate identification of yeasts isolated from human and animals. Int J Vet Sci Med. 2013;1:15–20. doi: 10.1016/j.ijvsm.2013.03.001. DOI
Tiwari B, Sellamuthu B, Ouarda Y, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol. 2017;224:1–12. doi: 10.1016/j.biortech.2016.11.042. PubMed DOI
Varma KS, Tayade RJ, Shah KJ, et al. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: a review. Water-Energy Nexus. 2020;3:46–61. doi: 10.1016/j.wen.2020.03.008. DOI
Wen T, Zhang H, Chong Y, et al. Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: molecular oxygen-mediated activation. Nano Res. 2016;9:1663–1673. doi: 10.1007/s12274-016-1060-7. DOI
Xie C, Wei S, Chen D, et al. Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(ii) adsorption and detection. RSC Adv. 2019;9:23474–23483. doi: 10.1039/c9ra03859k. PubMed DOI PMC
Yap HC, Pang YL, Lim S, et al. Enhanced sonophotocatalytic degradation of paracetamol in the presence of Fe-doped TiO2 nanoparticles and H2O2. Environ Earth Sci. 2020;79:1–12. doi: 10.1007/s12665-020-09194-x. DOI
Zhang Q, Chen S, Wang H. A surface plasmon-enhanced nanozyme-based fenton process for visible-light-driven aqueous ammonia oxidation. Green Chem. 2018;20:4067–4074. doi: 10.1039/c8gc01317a. DOI
Zhao J, Nguyen SC, Ye R, et al. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent Sci. 2017;3:482–488. doi: 10.1021/acscentsci.7b00122. PubMed DOI PMC
Zia J, Riaz U. Microwave-assisted degradation of paracetamol drug using polythiophene-sensitized Ag-Ag2O heterogeneous photocatalyst derived from plant extract. ACS Omega. 2020;5:16386–16394. doi: 10.1021/acsomega.0c00405. PubMed DOI PMC