Drought-Tolerance Gene Identification Using Genome Comparison and Co-Expression Network Analysis of Chromosome Substitution Lines in Rice
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33066648
PubMed Central
PMC7602393
DOI
10.3390/genes11101197
PII: genes11101197
Knihovny.cz E-resources
- Keywords
- CSSLs, co-expression network, drought stress, ‘KDML105’ rice,
- MeSH
- Chromosomes, Plant genetics MeSH
- Adaptation, Physiological * MeSH
- Gene Regulatory Networks MeSH
- Quantitative Trait Loci * MeSH
- Droughts * MeSH
- Gene Expression Regulation, Plant * MeSH
- Plant Proteins genetics MeSH
- Oryza genetics growth & development MeSH
- Gene Expression Profiling MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Plant Proteins MeSH
Drought stress limits plant growth and productivity. It triggers many responses by inducing changes in plant morphology and physiology. KDML105 rice is a key rice variety in Thailand and is normally grown in the northeastern part of the country. The chromosome segment substitution lines (CSSLs) were developed by transferring putative drought tolerance loci (QTLs) on chromosome 1, 3, 4, 8, or 9 into the KDML105 rice genome. CSSL104 is a drought-tolerant line with higher net photosynthesis and leaf water potential than KDML105 rice. The analysis of CSSL104 gene regulation identified the loci associated with these traits via gene co-expression network analysis. Most of the predicted genes are involved in the photosynthesis process. These genes are also conserved in Arabidopsis thaliana. Seven genes encoding chloroplast proteins were selected for further analysis through characterization of Arabidopsis tagged mutants. The response of these mutants to drought stress was analyzed daily for seven days after treatment by scoring green tissue areas via the PlantScreen™ XYZ system. Mutation of these genes affected green areas of the plant and stability index under drought stress, suggesting their involvement in drought tolerance.
Genome Center and Department of Plant Biology UC Davis Genome Center UC Davis Davis CA 95616 USA
Program in Biotechnology Faculty of Science Chulalongkorn University Bangkok 10300 Thailand
See more in PubMed
Saikumar S., Gouda P.K., Saiharini A., Varma C.M.K., Vineesha G., Padmavathi G., Shenoy V.V. Major QTL for enhancing rice grain yield under lowland reproductive drought stress identify using O. sativa/O. glaberrima introgression line. Field Crops Res. 2014;163:119–131. doi: 10.1016/j.fcr.2014.03.011. DOI
Tulyathan V., Leeharatanaluk B. Change in quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105 during storage. J. Food Biochem. 2007;31:415–425. doi: 10.1111/j.1745-4514.2007.00125.x. DOI
Siangliw J., Jongdee B., Pantuwan G., Toojinda T. Developing KDML105 backcross introgression lines using marker-assisted selection for QTLs associated with drought tolerance in rice. Sci. Asia. 2007;33:207–214. doi: 10.2306/scienceasia1513-1874.2007.33.207. DOI
Siddique M.R.B., Hamid A., Islam M.S. Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin. 2001;41:35–39.
Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. Improving drought tolerance by exogenous application of glycine-betaine and salicylic acid in sunflower. J. Agron. Crop Sci. 2008;194:193. doi: 10.1111/j.1439-037X.2008.00305.x. DOI
Cornic G., Massacci A. Leaf photosynthesis under drought. In: Baker N.R., editor. Photosynthesis and the Environment. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1996. pp. 347–366.
Anjum F., Yaseen M., Rasul E., Wahid A., Anjum S. Water stress in barley (Hordeum valgare L.). I. effect on chemical composition and chlorophyll content. Pak. J. Agron. Sci. 2003;40:45–49.
Du Y.C., Kawamitsu Y., Nose A., Hiyane S., Murayama S., Wasano K., Uchida Y. Effect on water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.) Aust. J. Plant Physiol. 1996;23:719–726. doi: 10.1071/PP9960719. DOI
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212. doi: 10.1051/agro:2008021. DOI
Zargar S.M., Gupta N., Nazir M., Mahajan R., Malik F.A., Sofi N.R., Shikari A.B., Salgotra R.K. Impact of drought on photosynthesis: Molecular perspective. Plant Gene. 2017;11:154–159. doi: 10.1016/j.plgene.2017.04.003. DOI
Kanjoo V., Punyawaew K., Siangliw J.L., Jearakongman S., Vanavichit A., Toojinda T. Evaluation of agronomic traits in chromosome segment substitution lines of KDML105 containing drought tolerance QTL under drought stress. Rice Sci. 2012;19:117–124. doi: 10.1016/S1672-6308(12)60030-4. DOI
Punchkhon C., Kasetranunt W., Kositsup B., Siengliw J., Chadchawan S. Evaluation of drought tolerance ability at seedling stage of CSSL rice populations with drought tolerant genes on chromosome 8; Proceedings of the 9th Botanical Conference of Thailand; Bangkok, Thailand. 3–5 June 2015; pp. 61–71.
Vajrabhaya M., Vajrabhaya T. Somaclonal variation of salt tolerance in rice. In: Bajaj Y.P.S., editor. Biotechnology Agriculture Forestry. Springer; Berlin/Heidelberg, Germany: 1991. pp. 368–382.
Pongprayoon W., Roytrakul S., Pichayangkura R., Chadchawan S. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.) Plant Growth Regul. 2013;70:159–173. doi: 10.1007/s10725-013-9789-4. DOI
Chintakovid N., Maipoka M., Phaonakrop N., Mickelbart M.V., Roytrakul S., Chadchawan S. Proteomic analysis of drought-responsive proteins in rice reveals photosynthesis-related adaptations to drought stress. Acta Physiol. Plant. 2017;39:240. doi: 10.1007/s11738-017-2532-4. DOI
Missirian V., Comai L., Filkov V. Statistical mutation calling from sequenced overlapping DNA pools in TILLING experiments. BMC Bioinf. 2011;12:287. doi: 10.1186/1471-2105-12-287. PubMed DOI PMC
Ouyang S., Zhu L., Hamilton J., Lin H., Campbell M., Childs K., Thibaud-Nissen F., Malek R.L., Lee Y., Zheng L., et al. The TIGR rice genome annotation resource: Improvements and new features. Nucleic Acids Res. 2007;35:883–887. doi: 10.1093/nar/gkl976. PubMed DOI PMC
Kawahara Y., de la Bastide M., Hamilton J.P., Kanamori H., McCombie W.R., Ouyang S., Schwartz D.C., Tanaka T., Zhou S., Childs K.L., et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013;6:4. doi: 10.1186/1939-8433-6-4. PubMed DOI PMC
Cao P., Jung K., Choi D., Hwang D., Zhu J., Ronald P. The rice oligonucleotide array database: An atlas of rice gene expression. Rice. 2012;5:17. doi: 10.1186/1939-8433-5-17. PubMed DOI PMC
Xia L., Zou D., Sang J., Xu X.J., Yin H.Y., Li M.W., Wu S.Y., Hu S.N., Hao L.L., Zhang Z. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice. J. Genet. Genom. 2017;44:235–241. doi: 10.1016/j.jgg.2017.05.003. PubMed DOI
Lamesch P., Berardini T.Z., Li D., Swarbreck D., Wilks C., Sasidharan R., Muller R., Dreher K., Alexander D.L., Garcia-Hernandez M., et al. The arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–D1210. doi: 10.1093/nar/gkr1090. PubMed DOI PMC
De Diego N., Fürst T., Humplik J., Ugena L., Podlešáková K., Spíchal L. An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation stress condition. Front. Plan Sci. 2017;8:1702. doi: 10.3389/fpls.2017.01702. PubMed DOI PMC
Yonemaru J., Yamamoto T., Fukuoka S., Uga Y., Hori K., Yano M. Q-TARO:QTL Annotation rice online database. Rice. 2010;3:194. doi: 10.1007/s12284-010-9041-z. DOI
Tu C.J., Schuenemann D., Hoffman N.E. Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J. Biochem. Chem. 1999;274:27219–27224. doi: 10.1074/jbc.274.38.27219. PubMed DOI
Rumeau D., Bécuwe-Linka N., Beyly A., Louwagie M., Garin J., Peltier G. New subunit NDH-M, -N, -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell. 2005;17:219–232. doi: 10.1105/tpc.104.028282. PubMed DOI PMC
Brooks M.D., Sylak-Glassman E.J., Fleming G.R., Niyogi K.K. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:E2733–E2740. doi: 10.1073/pnas.1305443110. PubMed DOI PMC
Adamiec M., Gibasiewicz K., Luciński R., Giera W., Chełminiak P., Szewczyk S., Sipińska W., Grondelle R., Jackowski G. Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3. J Photochem Photobiol. B Biol. 2015;153:423–428. doi: 10.1016/j.jphotobiol.2015.11.002. PubMed DOI
Guan Z., Wang W., Yu X., Lin W., Maio Y. Comparative proteomic analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing of leaves in Arabidopsis. Int. J. Mol. Sci. 2018;19:2331. doi: 10.3390/ijms19082231. PubMed DOI PMC
Hertle A.P., Blunder T., Wunder T., Pesaresi P., Pribil M., Armbruster U., Leister D. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell. 2013;49:511–523. doi: 10.1016/j.molcel.2012.11.030. PubMed DOI
Hey D., Grimm B. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiol. 2018;177:1453–1472. doi: 10.1104/pp.18.00540. PubMed DOI PMC
Li Y., Liu B., Zhang J., Kong F., Zhang L., Meng H., Li W., Rochaix J.D., Li D., Peng L. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol. 2019;179:195–208. doi: 10.1104/pp.18.01231. PubMed DOI PMC
Chotewutmontri P., Williams-Carrier R., Barkan A. Exploring the link between photosystem II assembly and translation of the chloroplast psbA mRNA. Plants. 2020;9:152. doi: 10.3390/plants9020152. PubMed DOI PMC
Motohashi R., Yamazaki T., Myouga F., Ito T., Ito K., Satou M., Kobayashi M., Nagata N., Yoshida S., Nagashima A., et al. Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol. Biol. 2007;646:481–497. doi: 10.1007/s11103-007-9166-7. PubMed DOI
Tezara W., Mitchell V.J., Driscoll S.D., Lawlor D.W. Water stress inhibits plant photosynthesis by decreaseing coupling factor and ATP. Nature. 1999;401:914–917. doi: 10.1038/44842. DOI
Teulat B., Monneveux P., Wery J., Borries C., Souyris I., Charrier A., This D. Relationships between relative water content and growth parameters under water stress in barley: A QTL study. New Phytol. 1997;137:99–107. doi: 10.1046/j.1469-8137.1997.00815.x. DOI
González L., González-Vilar M. Handbook of Plant Ecophysiology Techniques. Springer; Berlin/Heidelberg, Germany: 2001. Determination of relative water content; pp. 207–212.
Nikkanen L., Toivola J., Trotta A., Diaz M.G., Tikkanen M., Aro E., Rintamäki E. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct. 2018;2:e00093. doi: 10.1002/pld3.93. PubMed DOI PMC
Damkjaer J.T., Kereïche S., Johnson M., Kovacs L., Kiss A.Z., Boekema E.J., Ruban A.V., Horton P., Jansson S. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell. 2009;21:3245–3256. doi: 10.1105/tpc.108.064006. PubMed DOI PMC
Wang L., Ouyang M., Li Q., Zou M., Gou J., Ma J., Lu C., Zhang L. The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. Plant Mol. Biol. 2010;74:47–59. doi: 10.1007/s11103-010-9653-0. PubMed DOI
DalCorso G., Pesaresi P., Masiero S., Aseeva E., Schünemann D., Finazzi G., Joliot P., Barbato R., Leister D. A complex containing PGRL1 and PGRL5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell. 2008;132:273–285. doi: 10.1016/j.cell.2007.12.028. PubMed DOI
Suorsa M., Rossi F., Tadini L., Labs M., Colombo M., Jahns P., Kater M.M., Leister D., Finazzi G., Aro E., et al. PGRL5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in Arabidopsis thaliana. Mol. Plant. 2016;9:271–288. doi: 10.1016/j.molp.2015.12.001. PubMed DOI
Wang F., Yan J., Ahammed G.J., Wang X., Bu X., Xiang H., Li Y., Lu J., Liu Y., Qi H., et al. PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato. Front. Plant Sci. 2020;11:669. doi: 10.3389/fpls.2020.00669. PubMed DOI PMC
Johnson X., Wostrikoff K., Finazzi G., Kuras R., Schwarz C., Bujaldon S., Nickelsen J., Stern D.B., Wollman F., Vallon O. MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomas and Arabidopsis. Plant Cell. 2010;22:234–248. doi: 10.1105/tpc.109.066266. PubMed DOI PMC