Maturing conditions of bimetallic nanocomposites as a new factor influencing Au-Ag synergism and impact of Cu(II) and/or Fe(III) on luminescence

. 2025 Jan ; 12 (1) : 241385. [epub] 20250122

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39845720

Gold-silver synergism has been well documented in many scientific works dealing with luminescent nanostructures that are exploitable in biomedical and environmental application. Frequently, the ratio of Au : Ag in synthetic mixtures was varied to influence the extent of Au-Ag synergism of the resulting luminescent gold-silver nanoclusters (GSNCs). However, in our approach, a new step, maturing under differing conditions using the same Au : Ag ratio (5 : 1), has been investigated systematically for the very first time. As referent systems, monometallic gold nanoclusters (AuNCs) and protein treated by the conditions of synthesis and maturing were prepared and investigated. The selected types of maturing conditions led to distinct changes in fluorescence characteristics and, consequently, Au-Ag synergism extent (evaluated as the ratio of fluorescence quantum yields of GSNCs versus AuNCs). The best synergism was obtained for GSNCs matured at 37°C for 2.5 h. The stability of luminescent signal of these GSNCs was tested in the presence of an excess (to 20 mM) of Cu(II) and/or Fe(III) ions (crucial cofactors in living systems). The same metallic ion concentration caused different extents of GSNC luminescence quenching, for which a plausible reasoning is suggested.

Zobrazit více v PubMed

Ganguly M, Jana J, Pal A, Pal T. 2016. Synergism of gold and silver invites enhanced fluorescence for practical applications. RSC Adv. 6, 17683–17703. (10.1039/c5ra26430h) DOI

Tian L, Li Y, Ren T, Tong Y, Yang B, Li Y. 2017. Novel bimetallic gold–silver nanoclusters with ‘synergy’-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing. Talanta 170, 530–539. (10.1016/j.talanta.2017.03.107) PubMed DOI

Zhang N, Si Y, Sun Z, Chen L, Li R, Qiao Y, Wang H. 2014. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold–silver nanoclusters with ‘silver effect’-enhanced red fluorescence. Anal. Chem. 86, 11714–11721. (10.1021/ac503102g) PubMed DOI

Zheng B, Zheng J, Yu T, Sang A, Du J, Guo Y, Xiao D, Choi MMF. 2015. Fast microwave-assisted synthesis of AuAg bimetallic nanoclusters with strong yellow emission and their response to mercury(II) ions. Sens. Actuators B 221, 386–392. (10.1016/j.snb.2015.06.089) DOI

Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D. 2016. Facile synthesis of enhanced fluorescent gold–silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal. Chem. 88, 8886–8892. (10.1021/acs.analchem.6b02543) PubMed DOI

Zhang J, Yuan Y, Wang Y, Sun F, Liang G, Jiang Z, Yu SH. 2015. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: a unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 8, 2329–2339. (10.1007/s12274-015-0743-9) DOI

Dai R, Deng W, Hu P, You C, Yang L, Jiang X, Xiong X, Huang K. 2018. One-pot synthesis of bovine serum albumin protected gold/silver bimetallic nanoclusters for ratiometric and visual detection of mercury. Microchem. J. 139, 1–8. (10.1016/j.microc.2018.02.010) DOI

Gui R, Jin H. 2013. Retracted article: Aqueous synthesis of human serum albumin-stabilized fluorescent Au/Ag core/shell nanocrystals for highly sensitive and selective sensing of copper(II). Analyst 138, 7197–7205. (10.1039/c3an01397a) PubMed DOI

Ganguly M, Jana J, Mondal C, Pal A, Pal T. 2014. Green synthesis of highly fluorescent Au(I)@Ag2/Ag3-thiolate core-shell particles for selective detection of cysteine and Pb(II). Phys. Chem. Chem. Phys. 16, 18185–18197. (10.1039/c4cp01782j) PubMed DOI

Zhai Q, Xing H, Fan D, Zhang X, Li J, Wang E. 2018. Gold-silver bimetallic nanoclusters with enhanced fluorescence for highly selective and sensitive detection of glutathione. Sens. Actuators B 273, 1827–1832. (10.1016/j.snb.2018.05.145) DOI

Feng T, Chen Y, Feng B, Yan J, Di J. 2019. Fluorescence red-shift of gold-silver nanoclusters upon interaction with cysteine and its application. Spectrochim. Acta A 206, 97–103. (10.1016/j.saa.2018.07.087) PubMed DOI

Sannigrahi A, Chowdhury S, Nandi I, Sanyal D, Chall S, Chattopadhyay K. 2019. Development of a near infrared Au-Ag bimetallic nanocluster for ultrasensitive detection of toxic Pb²⁺ ions: in vitro and inside cells. Nanoscale Adv. 1, 3660–3669. (10.1039/c9na00459a) PubMed DOI PMC

Fereja SL, Li P, Guo J, Fang Z, Zhang Z, Zhuang Z, Zhang X, Liu K, Chen W. 2021. Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid. Talanta 233, 122469. (10.1016/j.talanta.2021.122469) PubMed DOI

Zhou T, Su Z, Tu Y, Yan J. 2021. Determination of dopamine based on its enhancement of gold-silver nanocluster fluorescence. Spectrochim. Acta A 252, 119519. (10.1016/j.saa.2021.119519) PubMed DOI

Dutta D, Chattopadhyay A, Ghosh SS. 2016. Cationic BSA templated Au–Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomater. Sci. Eng. 2, 2090–2098. (10.1021/acsbiomaterials.6b00517) PubMed DOI

Mohanty JS, Xavier PL, Chaudhari K, Bootharaju MS, Goswami N, Pal SK, Pradeep T. 2012. Luminescent, bimetallic AuAg alloy quantum clusters in protein templates. Nanoscale 4, 4255–4262. (10.1039/c2nr30729d) PubMed DOI

Li CM, Ding SN. 2015. Rapid, selective, and ultrasensitive fluorescence ratiometric detection of sulfide ions using dual-emitting BSA–erbium(III)-modulated gold–silver bimetallic nanoclusters. Anal. Methods 7, 4348–4354. (10.1039/c5ay00685f) DOI

Mishra D, Lobodin V, Zhang C, Aldeek F, Lochner E, Mattoussi H. 2018. Gold-doped silver nanoclusters with enhanced photophysical properties. Phys. Chem. Chem. Phys. 20, 12992–13007. (10.1039/c7cp08682b) PubMed DOI

Chen L, Du Y, Lv Y, Fan D, Wu J, Wu L, Cui M, Yu H, Zhu M. 2023. Nicotinamide adenine dinucleotide (NAD+) reduction enabled by an atomically precise Au-Ag alloy nanocluster. Nano Res. 16, 7770–7776. (10.1007/s12274-023-5415-6) DOI

Praus P, Kocisova E, Seksek O, Sureau F, Stepanek J, Turpin PY. 2007. Advanced microfluorescence methods in monitoring intracellular uptake of ‘antisense’ oligonucleotides. Curr. Org. Chem. 11, 515–527. (10.2174/138527207780368210) DOI

Ungor D, Szilágyi I, Csapó E. 2021. Yellow-emitting Au/Ag bimetallic nanoclusters with high photostability for detection of folic acid. J. Mol. Liq. 338, 116695. (10.1016/j.molliq.2021.116695) DOI

Wang M, Zhou X, Wang X, Wang M, Su X. 2021. One-step fabrication of wavelength-tunable luminescence of gold-silver bimetallic nanoclusters: robust performance for α-glucosidase assay. Sens. Actuators B 345, 130407. (10.1016/j.snb.2021.130407) DOI

Svačinová V, Halili A, Ostruszka R, Pluháček T, Jiráková K, Jirák D, Šišková K. 2024. Trimetallic nanocomposites developed for efficient in vivo bimodal imaging via fluorescence and magnetic resonance. J. Mater. Chem. B 12, 8153–8166. (10.1039/D4TB00655K) PubMed DOI

Zhang XD, Guo ML, Wu D, Liu PX, Sun YM, Zhang LA, She Y, Liu QF, Fan FY. 2011. First-principles investigation of Ag-doped gold nanoclusters. Int. J. Mol. Sci. 12, 2972–2981. (10.3390/ijms12052972) PubMed DOI PMC

Andrýsková P, Šišková KM, Michetschlägerová Š, Jiráková K, Kubala M, Jirák D. 2020. The effect of fatty acids and BSA purity on synthesis and properties of fluorescent gold nanoclusters. Nanomaterials 10, 343. (10.3390/nano10020343) PubMed DOI PMC

Ostruszka R, Zoppellaro G, Tomanec O, Pinkas D, Filimonenko V, Šišková K. 2022. Evidence of Au(II) and Au(0) states in bovine serum albumin-Au nanoclusters revealed by CW-EPR/LEPR and peculiarities in HR-TEM/STEM imaging. Nanomaterials 12, 1425. (10.3390/nano12091425) PubMed DOI PMC

Mussa Farkhani S, Dehghankelishadi P, Refaat A, Veerasikku Gopal D, Cifuentes-Rius A, Voelcker NH. 2024. Tailoring gold nanocluster properties for biomedical applications: from sensing to bioimaging and theranostics. Prog. Mater. Sci. 142, 101229. (10.1016/j.pmatsci.2023.101229) DOI

Weaver JF, Hoflund GB. 1994. Surface characterization study of the thermal decomposition of Ag2O. Chem. Mater. 6, 1693–1699. (10.1021/cm00046a022) DOI

Zheng J, Nicovich PR, Dickson RM. 2007. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 58, 409–431. (10.1146/annurev.physchem.58.032806.104546) PubMed DOI PMC

Behafarid F, Matos J, Hong S, Zhang L, Rahman TS, Roldan Cuenya B. 2014. Structural and electronic properties of micellar Au nanoparticles: size and ligand effects. ACS Nano 8, 6671–6681. (10.1021/nn406568b) PubMed DOI

van der Linden M, van Bunningen AJ, Amidani L, Bransen M, Elnaggar H, Glatzel P, Meijerink A, de Groot FMF. 2018. Single Au atom doping of silver nanoclusters. ACS Nano 12, 12751–12760. (10.1021/acsnano.8b07807) PubMed DOI PMC

Schmidbaur H. 2000. The aurophilicity phenomenon: a decade of experimental findings, theoretical concepts and emerging applications. Gold Bull. 33, 3–10. (10.1007/bf03215477) DOI

Ford ES. 2000. Serum copper concentration and coronary heart disease among US adults. Am. J. Epidemiol. 151, 1182–1188. (10.1093/oxfordjournals.aje.a010168) PubMed DOI

Mount Sinai . 2024. Serum iron test. See https://www.mountsinai.org/health-library/tests/serum-iron-test (accessed 31 October 2024).

Wang HB, Mao AL, Tao BB, Zhang HD, Liu YM. 2021. Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters. New J. Chem. 45, 4195–4201. (10.1039/d0nj06192a) DOI

Huang H, Li H, Feng JJ, Wang AJ. 2016. One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe³⁺. Sens. Actuators B 223, 550–556. (10.1016/j.snb.2015.09.136) DOI

Li JJ, Qiao D, Zhao J, Weng GJ, Zhu J, Zhao JW. 2019. Ratiometric fluorescence detection of Hg²⁺ and Fe³⁺ based on BSA-protected Au/Ag nanoclusters and His-stabilized Au nanoclusters. Methods Appl. Fluoresc. 7, 045001. (10.1088/2050-6120/ab34be) PubMed DOI

Dixon JM, Egusa S. 2018. Conformational change-induced fluorescence of bovine serum albumin–gold complexes. J. Am. Chem. Soc. 140, 2265–2271. (10.1021/jacs.7b11712) PubMed DOI

Zoppellaro G, Ostruszka R, Siskova K. 2024. Engineered protein-iron and/or gold-protein-iron nanocomposites in aqueous solutions upon UVA light: photo-induced electron transfer possibilities and limitations. J. Photochem. Photobiol. A 450, 115415. (10.1016/j.jphotochem.2023.115415) DOI

Duff, Jr. MR, Kumar CV. 2009. The metallomics approach: use of Fe(II) and Cu(II) footprinting to examine metal binding sites on serum albumins. Metallomics 1, 518. (10.1039/b910253a) PubMed DOI

Harford C, Sarkar B. 1997. Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc. Chem. Res. 30, 123–130. (10.1021/ar9501535) DOI

Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ. 2003. Interdomain zinc site on human albumin. Proc. Natl Acad. Sci. USA 100, 3701–3706. (10.1073/pnas.0436576100) PubMed DOI PMC

Zhang Y, Wilcox DE. 2002. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. JBIC J. Biol. Inorg. Chem. 7, 327–337. (10.1007/s00775-001-0302-6) PubMed DOI

Ohyoshi E, Hamada Y, Nakata K, Kohata S. 1999. The interaction between human and bovine serum albumin and zinc studied by a competitive spectrophotometry. J. Inorg. Biochem. 75, 213–218. (10.1016/s0162-0134(99)00090-2) PubMed DOI

Bal W, Sokołowska M, Kurowska E, Faller P. 2013. Binding of transition metal ions to albumin: sites, affinities and rates. Biochim. Biophys. Acta Gen. Subj. 1830, 5444–5455. (10.1016/j.bbagen.2013.06.018) PubMed DOI

Ca C, Sadler PJ, Viles JH. 1996. ¹H and ¹¹³Cd NMR investigations of Cd²⁺ and Zn²⁺ binding sites on serum albumin: competition with Ca²⁺, Ni²⁺, Cu²⁺, and Zn²⁺. Inorg. Chem. 35, 4490–4496. (10.1021/ic951005d) PubMed DOI

Ostruszka R, Půlpánová D, Pluháček T, Tomanec O, Novák P, Jirák D, Šišková K. 2023. Facile one-pot green synthesis of magneto-luminescent bimetallic nanocomposites with potential as dual imaging agent. Nanomaterials 13, 1027. (10.3390/nano13061027) PubMed DOI PMC

Rurack K, Spieles M. 2011. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600–1000 nm. Anal. Chem. 83, 1232–1242. (10.1021/ac101329h) PubMed DOI

Svačinová V, Pluháček T, Petr M, Siskova K. 2025. Supplementary material from: Maturing conditions of bimetallic nanocomposites as a new factor influencing Au-Ag synergism and impact of Cu (II) and/or Fe (III) on luminescence. Figshare. (10.6084/m9.figshare.c.7611341) PubMed DOI PMC

Překlad názvu, Svačinová V, Pluháček T, Petr M, Šišková K. 2024. Data k rukopisu AuAg nanoklastry—podmínky zrání a dopad vybraných kovových kationtů na luminiscenci AuAg nanoklastrů. (10.48700/datst.mff4d-q4a24) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.7611341

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...