Facile One-Pot Green Synthesis of Magneto-Luminescent Bimetallic Nanocomposites with Potential as Dual Imaging Agent
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03207S
Czech Science Foundation
IN00023001
Ministry of Health, Czech Republic
IGA_PrF_2022_003
Internal Grant Agency of Palacký University
IGA_PrF_2023_003
Internal Grant of Palacký University
Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016713 (Doctoral Student Grant Competition, grant number DSGC-2021-0113)
OP RDE project "Improving schematics of Doctoral student grant competition and their pilot implementation"
PubMed
36985921
PubMed Central
PMC10054767
DOI
10.3390/nano13061027
PII: nano13061027
Knihovny.cz E-zdroje
- Klíčová slova
- MRI assessment, SPION, bovine serum albumin, gold nanocluster, imaging, luminescence material, nanocomposite material,
- Publikační typ
- časopisecké články MeSH
Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner and obeys the principles of green chemistry. Briefly, bovine serum albumin (BSA) was exploited to uptake Au (III) and Fe (II)/Fe (III) ions simultaneously. Then, Au (III) ions were transformed to luminescent Au nanoclusters embedded in BSA (AuNCs-BSA) and majority of Fe ions were bio-embedded into superparamagnetic iron oxide nanoparticles (SPIONs) by the alkalization of the reaction medium. The resulting nanocomposites, AuNCs-BSA-SPIONs, represent a bimodal nanoprobe. Scanning transmission electron microscopy (STEM) imaging visualized nanostructures with sizes in units of nanometres that were arranged into aggregates. Mössbauer spectroscopy gave direct evidence regarding SPION presence. The potential applicability of these bimodal nanoprobes was verified by the measurement of their luminescent features as well as magnetic resonance (MR) imaging and relaxometry. It appears that these magneto-luminescent nanocomposites were able to compete with commercial MRI contrast agents as MR displays the beneficial property of bright luminescence of around 656 nm (fluorescence quantum yield of 6.2 ± 0.2%). The biocompatibility of the AuNCs-BSA-SPIONs nanocomposite has been tested and its long-term stability validated.
Zobrazit více v PubMed
Han X., Xu K., Taratula O., Farsad K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale. 2019;11:799–819. doi: 10.1039/C8NR07769J. PubMed DOI PMC
Nienhaus K., Wang H., Nienhaus G.U. Nanoparticles for Biomedical Applications: Exploring and Exploiting Molecular Interactions at the Nano-Bio Interface. Mater. Today Adv. 2020;5:100036. doi: 10.1016/j.mtadv.2019.100036. DOI
Xu C., Wang Y., Zhang C., Jia Y., Luo Y., Gao X. AuGd Integrated Nanoprobes for Optical/MRI/CT Triple-Modal in Vivo Tumor Imaging. Nanoscale. 2017;9:4620–4628. doi: 10.1039/C7NR01064H. PubMed DOI
Pan U.N., Khandelia R., Sanpui P., Das S., Paul A., Chattopadhyay A. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery. ACS Appl. Mater. Interfaces. 2017;9:19495–19501. doi: 10.1021/acsami.6b06099. PubMed DOI
Zhao C., Du T., ur Rehman F., Lai L., Liu X., Jiang X., Li X., Chen Y., Zhang H., Sun Y., et al. Biosynthesized Gold Nanoclusters and Iron Complexes as Scaffolds for Multimodal Cancer Bioimaging. Small. 2016;12:6255–6265. doi: 10.1002/smll.201602526. PubMed DOI
Pahari S.K., Olszakier S., Kahn I., Amirav L. Magneto-Fluorescent Yolk–Shell Nanoparticles. Chem. Mater. 2018;30:775–780. doi: 10.1021/acs.chemmater.7b04253. DOI
Su X., Xu Y., Che Y., Liao X., Jiang Y. A Type of Novel Fluorescent Magnetic Carbon Quantum Dots for Cells Imaging and Detection. J. Biomed. Mater. Res. A. 2015;103:3956–3964. doi: 10.1002/jbm.a.35468. PubMed DOI
Wang C., Yao Y., Song Q. Gold Nanoclusters Decorated with Magnetic Iron Oxide Nanoparticles for Potential Multimodal Optical/Magnetic Resonance Imaging. J. Mater. Chem. C Mater. 2015;3:5910–5917. doi: 10.1039/C5TC00290G. DOI
Huang C.-L., Hsieh W.-J., Lin C.-W., Yang H.-W., Wang C.-K. Multifunctional Liposomal Drug Delivery with Dual Probes of Magnetic Resonance and Fluorescence Imaging. Ceram. Int. 2018;44:12442–12450. doi: 10.1016/j.ceramint.2018.04.034. DOI
Binaymotlagh R., Hajareh Haghighi F., Aboutalebi F., Mirahmadi-Zare S.Z., Hadadzadeh H., Nasr-Esfahani M.-H. Selective Chemotherapy and Imaging of Colorectal and Breast Cancer Cells by a Modified MUC-1 Aptamer Conjugated to a Poly(Ethylene Glycol)-Dimethacrylate Coated Fe3O4–AuNCs Nanocomposite. New J. Chem. 2019;43:238–248. doi: 10.1039/C8NJ04236E. DOI
Sheng J., Jiang X., Wang L., Yang M., Liu Y.-N. Biomimetic Mineralization Guided One-Pot Preparation of Gold Clusters Anchored Two-Dimensional MnO2 Nanosheets for Fluorometric/Magnetic Bimodal Sensing. Anal. Chem. 2018;90:2926–2932. doi: 10.1021/acs.analchem.7b05267. PubMed DOI
Xu Y., Palchoudhury S., Qin Y., Macher T., Bao Y. Make Conjugation Simple: A Facile Approach to Integrated Nanostructures. Langmuir. 2012;28:8767–8772. doi: 10.1021/la301200g. PubMed DOI
Meng L., Ma X., Jiang S., Ji G., Han W., Xu B., Tian J., Tian W. High-Efficiency Fluorescent and Magnetic Multimodal Probe for Long-Term Monitoring and Deep Penetration Imaging of Tumors. J. Mater. Chem. B. 2019;7:5345–5351. doi: 10.1039/C9TB00638A. PubMed DOI
Li D.-L., Tan J.-E., Tian Y., Huang S., Sun P.-H., Wang M., Han Y.-J., Li H.-S., Wu H.-B., Zhang X.-M., et al. Multifunctional Superparamagnetic Nanoparticles Conjugated with Fluorescein-Labeled Designed Ankyrin Repeat Protein as an Efficient HER2-Targeted Probe in Breast Cancer. Biomaterials. 2017;147:86–98. doi: 10.1016/j.biomaterials.2017.09.010. PubMed DOI
Le W., Cui S., Chen X., Zhu H., Chen B., Cui Z. Facile Synthesis of Gd-Functionalized Gold Nanoclusters as Potential MRI/CT Contrast Agents. Nanomaterials. 2016;6:65. doi: 10.3390/nano6040065. PubMed DOI PMC
Liang G., Xiao L. Gd 3+-Functionalized Gold Nanoclusters for Fluorescence–Magnetic Resonance Bimodal Imaging. Biomater. Sci. 2017;5:2122–2130. doi: 10.1039/C7BM00608J. PubMed DOI
Dong D., Jing X., Zhang X., Hu X., Wu Y., Duan C. Gadolinium(III)–Fluorescein Complex as a Dual Modal Probe for MRI and Fluorescence Zinc Sensing. Tetrahedron. 2012;68:306–310. doi: 10.1016/j.tet.2011.10.034. DOI
Guan S., Liang R., Li C., Wei M. A Supramolecular Material for Dual-Modal Imaging and Targeted Cancer Therapy. Talanta. 2017;165:297–303. doi: 10.1016/j.talanta.2016.12.068. PubMed DOI
Andrýsková P., Šišková K.M., Michetschlägerová Š., Jiráková K., Kubala M., Jirák D. The Effect of Fatty Acids and BSA Purity on Synthesis and Properties of Fluorescent Gold Nanoclusters. Nanomaterials. 2020;10:343. doi: 10.3390/nano10020343. PubMed DOI PMC
Hsu N.-Y., Lin Y.-W. Microwave-Assisted Synthesis of Bovine Serum Albumin–Gold Nanoclusters and Their Fluorescence-Quenched Sensing of Hg2+ Ions. New J. Chem. 2016;40:1155–1161. doi: 10.1039/C5NJ02263K. DOI
Yan L., Cai Y., Zheng B., Yuan H., Guo Y., Xiao D., Choi M.M.F. Microwave-Assisted Synthesis of BSA-Stabilized and HSA-Protected Gold Nanoclusters with Red Emission. J. Mater. Chem. 2012;22:1000–1005. doi: 10.1039/C1JM13457D. DOI
Ostruszka R., Zoppellaro G., Tomanec O., Pinkas D., Filimonenko V., Šišková K. Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging. Nanomaterials. 2022;12:1425. doi: 10.3390/nano12091425. PubMed DOI PMC
Zhou Z., Yang L., Gao J., Chen X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Adv. Mater. 2019;31:1804567. doi: 10.1002/adma.201804567. PubMed DOI PMC
Babes L., Denizot B., Tanguy G., le Jeune J.J., Jallet P. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J. Colloid Interface Sci. 1999;212:474–482. doi: 10.1006/jcis.1998.6053. PubMed DOI
Bajaj A., Samanta B., Yan H., Jerry D.J., Rotello V.M. Stability, Toxicity and Differential Cellular Uptake of Protein Passivated-Fe3O4 Nanoparticles. J. Mater. Chem. 2009;19:6328. doi: 10.1039/b901616c. DOI
Li D., Hua M., Fang K., Liang R. BSA Directed-Synthesis of Biocompatible Fe3O4 Nanoparticles for Dual-Modal T1 and T2 MR Imaging in Vivo. Anal. Methods. 2017;9:3099–3104. doi: 10.1039/C7AY00270J. DOI
Nosrati H., Sefidi N., Sharafi A., Danafar H., Kheiri Manjili H. Bovine Serum Albumin (BSA) Coated Iron Oxide Magnetic Nanoparticles as Biocompatible Carriers for Curcumin-Anticancer Drug. Bioorg. Chem. 2018;76:501–509. doi: 10.1016/j.bioorg.2017.12.033. PubMed DOI
Xu S., Wang J., Wei Y., Zhao H., Tao T., Wang H., Wang Z., Du J., Wang H., Qian J., et al. In Situ One-Pot Synthesis of Fe2O3@BSA Core-Shell Nanoparticles as Enhanced T1-Weighted Magnetic Resonance Imagine Contrast Agents. ACS Appl. Mater. Interfaces. 2020;12:56701–56711. doi: 10.1021/acsami.0c13825. PubMed DOI
Wang Y., Xu C., Chang Y., Zhao L., Zhang K., Zhao Y., Gao F., Gao X. Ultrasmall Superparamagnetic Iron Oxide Nanoparticle for T2-Weighted Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces. 2017;9:28959–28966. doi: 10.1021/acsami.7b10030. PubMed DOI
Li H., Yan K., Shang Y., Shrestha L., Liao R., Liu F., Li P., Xu H., Xu Z., Chu P.K. Folate-Bovine Serum Albumin Functionalized Polymeric Micelles Loaded with Superparamagnetic Iron Oxide Nanoparticles for Tumor Targeting and Magnetic Resonance Imaging. Acta Biomater. 2015;15:117–126. doi: 10.1016/j.actbio.2015.01.006. PubMed DOI
Vismara E., Bongio C., Coletti A., Edelman R., Serafini A., Mauri M., Simonutti R., Bertini S., Urso E., Assaraf Y., et al. Albumin and Hyaluronic Acid-Coated Superparamagnetic Iron Oxide Nanoparticles Loaded with Paclitaxel for Biomedical Applications. Molecules. 2017;22:1030. doi: 10.3390/molecules22071030. PubMed DOI PMC
An L., Yan C., Mu X., Tao C., Tian Q., Lin J., Yang S. Paclitaxel-Induced Ultrasmall Gallic Acid-Fe@BSA Self-Assembly with Enhanced MRI Performance and Tumor Accumulation for Cancer Theranostics. ACS Appl. Mater. Interfaces. 2018;10:28483–28493. doi: 10.1021/acsami.8b10625. PubMed DOI
Tian Q., An L., Tian Q., Lin J., Yang S. Ellagic Acid-Fe@BSA Nanoparticles for Endogenous H2S Accelerated Fe(III)/Fe(II) Conversion and Photothermal Synergistically Enhanced Chemodynamic Therapy. Theranostics. 2020;10:4101–4115. doi: 10.7150/thno.41882. PubMed DOI PMC
Harini G., Balasurya S., Khan S.S. Recent Advances on Gadolinium-Based Nano-Photocatalysts for Environmental Remediation and Clean Energy Production: Properties, Fabrication, Defect Engineering and Toxicity. J. Clean Prod. 2022;345:131139. doi: 10.1016/j.jclepro.2022.131139. DOI
Gao F., Qu H., Duan Y., Wang J., Song X., Ji T., Cao L., Nie G., Sun S. Dopamine Coating as a General and Facile Route to Biofunctionalization of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Separation of Proteins. RSC Adv. 2014;4:6657. doi: 10.1039/c3ra46938g. DOI
Nosrati H., Davaran S., Kheiri Manjili H., Rezaeejam H., Danafar H. Bovine Serum Albumin Stabilized Iron Oxide and Gold Bimetallic Heterodimers: Synthesis, Characterization and Stereological Study. Appl. Organomet. Chem. 2019;33:e5155. doi: 10.1002/aoc.5155. DOI
Nosrati H., Baghdadchi Y., Abbasi R., Barsbay M., Ghaffarlou M., Abhari F., Mohammadi A., Kavetskyy T., Bochani S., Rezaeejam H., et al. Iron Oxide and Gold Bimetallic Radiosensitizers for Synchronous Tumor Chemoradiation Therapy in 4T1 Breast Cancer Murine Model. J. Mater. Chem. B. 2021;9:4510–4522. doi: 10.1039/D0TB02561E. PubMed DOI
Rurack K., Spieles M. Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600−1000 nm. Anal. Chem. 2011;83:1232–1242. doi: 10.1021/ac101329h. PubMed DOI
Procházka V., Novák P., Stejskal A. Department of Experimental Physics. Mössbauer Spectrometers OLTWINS. [(accessed on 6 February 2023)]. Available online: http://oltwins.upol.cz/
Klencsár Z., Kuzmann E., Vértes A. User-Friendly Software for Mössbauer Spectrum Analysis. J. Radioanal. Nucl. Chem. Artic. 1996;210:105–118. doi: 10.1007/BF02055410. DOI
Zhang J., Cai C., Razzaque S., Hussain I., Lu Q.-W., Tan B. Synthesis of Water-Soluble and Highly Fluorescent Gold Nanoclusters for Fe3+ Sensing in Living Cells Using Fluorescence Imaging. J. Mater. Chem. B. 2017;5:5608–5615. doi: 10.1039/C7TB00966F. DOI
Zhang Y., Chen Y., Jiang H., Wang X. Selective and Sensitive Detection of Fe3+ Ion in Drinking Water Using L-Glutathione Stabilized Red Fluorescent Gold Nanoclusters. J. Nanosci. Nanotechnol. 2016;16:12179–12186. doi: 10.1166/jnn.2016.13772. DOI
Ungor D., Csapó E., Kismárton B., Juhász Á., Dékány I. Nucleotide-Directed Syntheses of Gold Nanohybrid Systems with Structure-Dependent Optical Features: Selective Fluorescence Sensing of Fe3+ Ions. Colloids Surf B Biointerfaces. 2017;155:135–141. doi: 10.1016/j.colsurfb.2017.04.013. PubMed DOI
Šišková K., Machala L., Tuček J., Kašlík J., Mojzeš P., Zbořil R. Mixtures of L-Amino Acids as Reaction Medium for Formation of Iron Nanoparticles: The Order of Addition into a Ferrous Salt Solution Matters. Int. J. Mol. Sci. 2013;14:19452–19473. doi: 10.3390/ijms141019452. PubMed DOI PMC
Rohrer M., Bauer H., Mintorovitch J., Requardt M., Weinmann H.-J. Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Investig. Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. PubMed DOI
Stanisz G.J., Henkelman R.M. Gd-DTPA Relaxivity Depends on Macromolecular Content. Magn. Reson. Med. 2000;44:665–667. doi: 10.1002/1522-2594(200011)44:5<665::AID-MRM1>3.0.CO;2-M. PubMed DOI
Bjørnerud A., Johansson L.O., Briley-Saebø K., Ahlström H.K. Assessment of T1 and T2* Effects in Vivo and Ex Vivo Using Iron Oxide Nanoparticles in Steady State-Dependence on Blood Volume and Water Exchange. Magn. Reson. Med. 2002;47:461–471. doi: 10.1002/mrm.10066. PubMed DOI
Van Osch M.J.P., Vonken E.P.A., Viergever M.A., van der Grond J., Bakker C.J.G. Measuring the Arterial Input Function with Gradient Echo Sequences. Magn. Reson. Med. 2003;49:1067–1076. doi: 10.1002/mrm.10461. PubMed DOI
Zhao J.M., Clingman C.S., Närväinen M.J., Kauppinen R.A., van Zijl P.C.M. Oxygenation and Hematocrit Dependence of Transverse Relaxation Rates of Blood at 3T. Magn. Reson. Med. 2007;58:592–597. doi: 10.1002/mrm.21342. PubMed DOI
Calamante F., Connelly A., van Osch M.J.P. Nonlinear ΔR2* Effects in Perfusion Quantification Using Bolus-Tracking MRI. Magn. Reson. Med. 2009;61:486–492. doi: 10.1002/mrm.21839. PubMed DOI
Patil V., Jensen J.H., Johnson G. Intravascular Contrast Agent T2* Relaxivity in Brain Tissue. NMR Biomed. 2013;26:392–399. doi: 10.1002/nbm.2876. PubMed DOI PMC
Ta H.T., Li Z., Wu Y., Cowin G., Zhang S., Yago A., Whittaker A.K., Xu Z.P. Effects of Magnetic Field Strength and Particle Aggregation on Relaxivity of Ultra-Small Dual Contrast Iron Oxide Nanoparticles. Mater. Res. Express. 2017;4:116105. doi: 10.1088/2053-1591/aa96e3. DOI
Weisskoff R., Zuo C.S., Boxerman J.L., Rosen B.R. Microscopic Susceptibility Variation and Transverse Relaxation: Theory and Experiment. Magn. Reson. Med. 1994;31:601–610. doi: 10.1002/mrm.1910310605. PubMed DOI
Goegan P., Johnson G., Vincent R. Effects of Serum Protein and Colloid on the AlamarBlue Assay in Cell Cultures. Toxicol. In Vitr. 1995;9:257–266. doi: 10.1016/0887-2333(95)00004-R. PubMed DOI
Funk D., Schrenk H.-H., Frei E. Serum Albumin Leads to False-Positive Results in the XTT and the MTT Assay. Biotechniques. 2007;43:178–186. doi: 10.2144/000112528. PubMed DOI
Neufeld B.H., Tapia J.B., Lutzke A., Reynolds M.M. Small Molecule Interferences in Resazurin and MTT-Based Metabolic Assays in the Absence of Cells. Anal. Chem. 2018;90:6867–6876. doi: 10.1021/acs.analchem.8b01043. PubMed DOI