The Effect of Fatty Acids and BSA Purity on Synthesis and Properties of Fluorescent Gold Nanoclusters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03207S
Grantová Agentura České Republiky
PubMed
32079332
PubMed Central
PMC7075172
DOI
10.3390/nano10020343
PII: nano10020343
Knihovny.cz E-zdroje
- Klíčová slova
- Au nanocluster, cell viability, fatty acid, palmitic acid, serum albumin,
- Publikační typ
- časopisecké články MeSH
Fluorescent gold nanoclusters (AuNCs) are envisaged as a novel type of fluorophores. This work reports on the first comparative study investigating the effect of presence/absence/abundance of fatty acids (namely palmitic acid, PA) or other substances (like glycoproteins and globulins) in the protein (bovine serum albumin, BSA) on synthesis and properties of the final AuNCs. The most popular template (BSA) and microwave (MW)-assisted synthesis of AuNCs have been intentionally chosen. Our results clearly demonstrate that the fluorescent characteristics (i.e., fluorescence lifetime and quantum yield) are affected by the fatty acids and/or other substances. Importantly, the as-prepared AuNCs are biocompatible, as determined by Alamar Blue assay performed on Hep G2 cell line.
Zobrazit více v PubMed
Yan L., Cai Y., Zheng B., Yuan H., Guo Y., Xiao D., Choi M.M.F. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J. Mater. Chem. 2012;22:1000–1005. doi: 10.1039/C1JM13457D. DOI
Xie J., Zheng Y., Ying J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009;131:888–889. doi: 10.1021/ja806804u. PubMed DOI
Khandelwal P., Poddar P. Fluorescent metal quantum clusters: An updated overview of the synthesis, properties, and biological applications. J. Mater. Chem. B. 2017;5:9055–9084. doi: 10.1039/C7TB02320K. PubMed DOI
Hu Y., Guo W., Wei H. Protein- and Peptide-Directed Approaches to Fluorescent Metal Nanoclusters. Isr. J. Chem. 2015;55:682–697. doi: 10.1002/ijch.201400178. DOI
Paramanik B., Patra A. Fluorescent AuAg alloy clusters: Synthesis and SERS applications. J. Mater. Chem. C. 2014;2:3005–3012. doi: 10.1039/C3TC32434F. DOI
Ding H., Yang D., Zhao C., Song Z., Liu P., Wang Y., Chen Z., Shen J. Protein-gold hybrid nanocubes for cell imaging and drug delivery. ACS Appl. Mater. Interfaces. 2015;7:4713–4719. doi: 10.1021/am5083733. PubMed DOI
Zhou Q., Lin Y., Xu M., Gao Z., Yang H., Tang D. Facile synthesis of enhanced fluorescent gold-silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal. Chem. 2016;88:8886–8892. doi: 10.1021/acs.analchem.6b02543. PubMed DOI
Yue Y., Liu T.Y., Li H.W., Liu Z., Wu Y. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale. 2012;4:2251–2254. doi: 10.1039/c2nr12056a. PubMed DOI
Xu Y., Sherwood J., Qin Y., Crowley D., Bonizzoni M., Bao Y. The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale. 2014;6:1515–1524. doi: 10.1039/C3NR06040C. PubMed DOI
Curry S. Plasma albumin as a fatty acid carrier. Adv. Mol. Cell Biol. 2004;33:29–46.
Chi Z., Hong B., Ren X., Cheng K., Lu Y., Liu X. Investigation on the conformational changes of bovine serum albumin in a wide pH range from 2 to 12. Spectrosc. Lett. 2018;51:279–286. doi: 10.1080/00387010.2018.1471092. DOI
Russell B.A., Kubiak-Ossowska K., Mulheran P.A., Birch D.J.S., Chen Y. Locating the nucleation sites for protein encapsulated gold nanoclusters: A molecular dynamics and fluorescence study. Phys. Chem. Chem. Phys. 2015;17:21935–21941. doi: 10.1039/C5CP02380G. PubMed DOI
Dixon J.M., Egusa S. Conformational change-induced fluorescence of bovine serum albumin-gold complexes. J. Am. Chem. Soc. 2018;140:2265–2271. doi: 10.1021/jacs.7b11712. PubMed DOI
Fujiwara S.I., Amisaki T. Fatty acid binding to serum albumin: Molecular simulation approaches. Biochim. Biophys. Acta Gen. Subj. 2013;1830:5427–5434. doi: 10.1016/j.bbagen.2013.03.032. PubMed DOI
Bal W., Sokołowska M., Kurowska E., Faller P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta Gen. Subj. 2013;1830:5444–5455. doi: 10.1016/j.bbagen.2013.06.018. PubMed DOI
Majorek K.A., Porebski P.J., Dayal A., Zimmerman M.D., Jablonska K., Stewart A.J., Chruszcz M., Minor W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2013;52:174–182. doi: 10.1016/j.molimm.2012.05.011. PubMed DOI PMC
Zhu T.T., Zhang Y., Luo X.A., Wang S.Z., Jia M.Q., Chen Z.X. Difference in binding of long- and medium-chain fatty acids with serum albumin: The role of macromolecular crowding effect. J. Agric. Food Chem. 2018;66:1242–1250. doi: 10.1021/acs.jafc.7b03548. PubMed DOI
van der Vusse G.J. Albumin as Fatty Acid Transporter. Drug Metab. Pharmacokinet. 2009;24:300–307. doi: 10.2133/dmpk.24.300. PubMed DOI
Curry S., Brick P., Franks N.P. Fatty acid binding to human serum albumin: New insights from crystallographic studies. Biochim. Biophys. Acta Gen. Subj. 1999;1441:131–140. doi: 10.1016/S1388-1981(99)00148-1. PubMed DOI
Fujiwara S.I., Amisaki T. Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method. Biophys. J. 2008;94:95–103. doi: 10.1529/biophysj.107.111377. PubMed DOI PMC
Fanali G., Di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI
Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol. 2006;361:336–351. doi: 10.1016/j.jmb.2006.06.028. PubMed DOI
Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57:787–796. doi: 10.1080/15216540500404093. PubMed DOI
Ascenzi P., Fasano M. Allostery in a monomeric protein: The case of human serum albumin. Biophys. Chem. 2010;148:16–22. doi: 10.1016/j.bpc.2010.03.001. PubMed DOI
Oleszko A., Hartwich J., Gąsior-Głogowska M., Olsztyńska-Janus S. Changes of albumin secondary structure after palmitic acid binding. FT-IR spectroscopic study. Acta Bioeng. Biomech. 2018;20:59–64. PubMed
Michnik A. Thermal stability of bovine serum albumin DSC study. J. Therm. Anal. Calorim. 2003;71:509–519. doi: 10.1023/A:1022851809481. DOI
Leggio C., Galantini L., Konarev P.V., Pavel N.V. Urea-induced denaturation process on defatted human serum albumin and in the presence of palmitic acid. J. Phys. Chem. B. 2009;113:12590–12602. doi: 10.1021/jp904330v. PubMed DOI
Yu D., Feng L., Fang X. In situ Fourier-transform infrared spectroscopy monitoring of the effect of microwaves on bovine serum albumin. RSC Adv. 2013;3:21381–21385. doi: 10.1039/c3ra42535e. DOI
Russell B.A., Garton A., Alshammari A.S., Birch D.J.S., Chen Y. Sudlow site II of human serum albumin remains functional after gold nanocluster encapsulation: A fluorescence-based drug binding study of L-Dopa. Methods Appl. Fluoresc. 2018;6:035017. doi: 10.1088/2050-6120/aacdee. PubMed DOI
Russell B.A., Mulheran P.A., Birch D.J.S., Chen Y. Probing the Sudlow binding site with warfarin: How does gold nanocluster growth alter human serum albumin? Phys. Chem. Chem. Phys. 2016;18:22874–22878. doi: 10.1039/C6CP03428D. PubMed DOI
Russell B.A., Jachimska B., Kralka I., Mulheran P.A., Chen Y. Human serum albumin encapsulated gold nanoclusters: Effects of cluster synthesis on natural protein characteristics. J. Mater. Chem. B. 2016;4:6876–6882. doi: 10.1039/C6TB01827K. PubMed DOI
Chevrier D.M., Thanthirige V.D., Luo Z., Driscoll S., Cho P., Macdonald M.A., Yao Q., Guda R., Xie J., Johnson E.R., et al. Structure and formation of highly luminescent protein-stabilized gold clusters. Chem. Sci. 2018;9:2782–2790. doi: 10.1039/C7SC05086K. PubMed DOI PMC
Chuang K.T., Lin Y.W. Microwave-assisted formation of gold nanoclusters capped in bovine serum albumin and exhibiting red or blue emission. J. Phys. Chem. C. 2017;121:26997–27003. doi: 10.1021/acs.jpcc.7b09349. DOI
Bhattacharya A.A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 2000;303:721–732. doi: 10.1006/jmbi.2000.4158. PubMed DOI
Brouwer A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report) Pure Appl. Chem. 2011;83:2213–2228. doi: 10.1351/PAC-REP-10-09-31. DOI
Dutta D., Chattopadhyay A., Ghosh S.S. Cationic BSA templated Au-Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomater. Sci. Eng. 2016;2:2090–2098. doi: 10.1021/acsbiomaterials.6b00517. PubMed DOI
Micsonai A., Wien F., Kernya L., Lee Y.-H., Goto Y., Réfrégiers M., Kardos J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA. 2015;112:E3095–E3103. doi: 10.1073/pnas.1500851112. PubMed DOI PMC
Micsonai A., Wien F., Bulyáki É., Kun J., Moussong É., Lee Y.H., Goto Y., Réfrégiers M., Kardos J. BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018;46:W315–W322. doi: 10.1093/nar/gky497. PubMed DOI PMC
Shang L., Wang Y., Jiang J., Dong S. PH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir. 2007;23:2714–2721. doi: 10.1021/la062064e. PubMed DOI
Chaudhari K., Xavier P.L., Pradeep T. Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano. 2011;5:8816–8827. doi: 10.1021/nn202901a. PubMed DOI
Zhang M., Dang Y.Q., Liu T.Y., Li H.W., Wu Y., Li Q., Wang K., Zou B. Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein. J. Phys. Chem. C. 2013;117:639–647. doi: 10.1021/jp309175k. DOI
Pajović J.D., Dojčilović R., Božanić D.K., Kaščáková S., Réfrégiers M., Dimitrijević-Branković S., Vodnik V.V., Milosavljević A.R., Piscopiello E., Luyt A.S., et al. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. Colloid Surf. B. 2015;135:742–750. doi: 10.1016/j.colsurfb.2015.08.050. PubMed DOI
Rawat K.A., Bhamore J.R., Singhal R.K., Kailasa S.K. Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples. Biosens. Bioelectron. 2017;88:71–77. doi: 10.1016/j.bios.2016.07.069. PubMed DOI
Tomita R.J., De Matos R.A., Vallim M.A., Courrol L.C. A simple and effective method to synthesize fluorescent nanoparticles using tryptophan and light and their lethal effect against bacteria. J. Photochem. Photobiol. B. 2014;140:157–162. doi: 10.1016/j.jphotobiol.2014.07.015. PubMed DOI
Kong J., Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biotechnol. Biophys. Sin. 2007;39:549–559. doi: 10.1111/j.1745-7270.2007.00320.x. PubMed DOI
Cao X.L., Li H.W., Yue Y., Wu Y. PH-Induced conformational changes of BSA in fluorescent AuNCs@BSA and its effects on NCs emission. Vib. Spectrosc. 2013;65:186–192. doi: 10.1016/j.vibspec.2013.01.004. DOI
Yue Y., Li H.W., Liu T.Y., Wu Y. Exploring the role of ligand-BSA in the response of BSA-protected gold-nanoclusters to silver (I) ions by FT-IR and circular dichroism spectra. Vib. Spectrosc. 2014;74:137–141. doi: 10.1016/j.vibspec.2014.04.005. DOI
Soleilhac A., Bertorelle F., Antoine R. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements. Spectrochim. Acta A. 2018;193:283–288. doi: 10.1016/j.saa.2017.12.025. PubMed DOI
Sharma A., Agarwal P.K., Deep S. Characterization of different conformations of bovine serum albumin and their propensity to aggregate in the presence of N-cetyl-N,N,N-trimethyl ammonium bromide. J. Colloid Interface Sci. 2010;343:454–462. doi: 10.1016/j.jcis.2009.12.012. PubMed DOI
Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Donaldson K., Poland C.A., Schins R.P.F. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology. 2010;4:414–420. doi: 10.3109/17435390.2010.482751. PubMed DOI
Ai J., Biazar E., Jafarpour M., Montazeri M., Majdi A., Zafari M., Akbari H.R., Rad H.G. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 2011;6:1117–1127. PubMed PMC
Patra H.K., Banerjee S., Chaudhuri U., Lahiri P., Dasgupta A.K. Cell selective response to gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007;3:111–119. doi: 10.1016/j.nano.2007.03.005. PubMed DOI
Gannon C.J., Patra C.R., Bhattacharya R., Mukherjee P., Curley S.A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 2008;6:1–9. doi: 10.1186/1477-3155-6-2. PubMed DOI PMC
Lee Y.J., Ahn E.Y., Park Y. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res. Lett. 2019;14:1–14. doi: 10.1186/s11671-019-2967-1. PubMed DOI PMC
Steckiewicz K.P., Barcinska E., Malankowska A., Zauszkiewicz–Pawlak A., Nowaczyk G., Zaleska-Medynska A., Inkielewicz-Stepniak I. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J. Mater. Sci. Mater. Med. 2019;30:1–15. doi: 10.1007/s10856-019-6221-2. PubMed DOI PMC