The Effect of Fatty Acids and BSA Purity on Synthesis and Properties of Fluorescent Gold Nanoclusters

. 2020 Feb 17 ; 10 (2) : . [epub] 20200217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32079332

Grantová podpora
19-03207S Grantová Agentura České Republiky

Fluorescent gold nanoclusters (AuNCs) are envisaged as a novel type of fluorophores. This work reports on the first comparative study investigating the effect of presence/absence/abundance of fatty acids (namely palmitic acid, PA) or other substances (like glycoproteins and globulins) in the protein (bovine serum albumin, BSA) on synthesis and properties of the final AuNCs. The most popular template (BSA) and microwave (MW)-assisted synthesis of AuNCs have been intentionally chosen. Our results clearly demonstrate that the fluorescent characteristics (i.e., fluorescence lifetime and quantum yield) are affected by the fatty acids and/or other substances. Importantly, the as-prepared AuNCs are biocompatible, as determined by Alamar Blue assay performed on Hep G2 cell line.

Zobrazit více v PubMed

Yan L., Cai Y., Zheng B., Yuan H., Guo Y., Xiao D., Choi M.M.F. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J. Mater. Chem. 2012;22:1000–1005. doi: 10.1039/C1JM13457D. DOI

Xie J., Zheng Y., Ying J.Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009;131:888–889. doi: 10.1021/ja806804u. PubMed DOI

Khandelwal P., Poddar P. Fluorescent metal quantum clusters: An updated overview of the synthesis, properties, and biological applications. J. Mater. Chem. B. 2017;5:9055–9084. doi: 10.1039/C7TB02320K. PubMed DOI

Hu Y., Guo W., Wei H. Protein- and Peptide-Directed Approaches to Fluorescent Metal Nanoclusters. Isr. J. Chem. 2015;55:682–697. doi: 10.1002/ijch.201400178. DOI

Paramanik B., Patra A. Fluorescent AuAg alloy clusters: Synthesis and SERS applications. J. Mater. Chem. C. 2014;2:3005–3012. doi: 10.1039/C3TC32434F. DOI

Ding H., Yang D., Zhao C., Song Z., Liu P., Wang Y., Chen Z., Shen J. Protein-gold hybrid nanocubes for cell imaging and drug delivery. ACS Appl. Mater. Interfaces. 2015;7:4713–4719. doi: 10.1021/am5083733. PubMed DOI

Zhou Q., Lin Y., Xu M., Gao Z., Yang H., Tang D. Facile synthesis of enhanced fluorescent gold-silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal. Chem. 2016;88:8886–8892. doi: 10.1021/acs.analchem.6b02543. PubMed DOI

Yue Y., Liu T.Y., Li H.W., Liu Z., Wu Y. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale. 2012;4:2251–2254. doi: 10.1039/c2nr12056a. PubMed DOI

Xu Y., Sherwood J., Qin Y., Crowley D., Bonizzoni M., Bao Y. The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale. 2014;6:1515–1524. doi: 10.1039/C3NR06040C. PubMed DOI

Curry S. Plasma albumin as a fatty acid carrier. Adv. Mol. Cell Biol. 2004;33:29–46.

Chi Z., Hong B., Ren X., Cheng K., Lu Y., Liu X. Investigation on the conformational changes of bovine serum albumin in a wide pH range from 2 to 12. Spectrosc. Lett. 2018;51:279–286. doi: 10.1080/00387010.2018.1471092. DOI

Russell B.A., Kubiak-Ossowska K., Mulheran P.A., Birch D.J.S., Chen Y. Locating the nucleation sites for protein encapsulated gold nanoclusters: A molecular dynamics and fluorescence study. Phys. Chem. Chem. Phys. 2015;17:21935–21941. doi: 10.1039/C5CP02380G. PubMed DOI

Dixon J.M., Egusa S. Conformational change-induced fluorescence of bovine serum albumin-gold complexes. J. Am. Chem. Soc. 2018;140:2265–2271. doi: 10.1021/jacs.7b11712. PubMed DOI

Fujiwara S.I., Amisaki T. Fatty acid binding to serum albumin: Molecular simulation approaches. Biochim. Biophys. Acta Gen. Subj. 2013;1830:5427–5434. doi: 10.1016/j.bbagen.2013.03.032. PubMed DOI

Bal W., Sokołowska M., Kurowska E., Faller P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta Gen. Subj. 2013;1830:5444–5455. doi: 10.1016/j.bbagen.2013.06.018. PubMed DOI

Majorek K.A., Porebski P.J., Dayal A., Zimmerman M.D., Jablonska K., Stewart A.J., Chruszcz M., Minor W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2013;52:174–182. doi: 10.1016/j.molimm.2012.05.011. PubMed DOI PMC

Zhu T.T., Zhang Y., Luo X.A., Wang S.Z., Jia M.Q., Chen Z.X. Difference in binding of long- and medium-chain fatty acids with serum albumin: The role of macromolecular crowding effect. J. Agric. Food Chem. 2018;66:1242–1250. doi: 10.1021/acs.jafc.7b03548. PubMed DOI

van der Vusse G.J. Albumin as Fatty Acid Transporter. Drug Metab. Pharmacokinet. 2009;24:300–307. doi: 10.2133/dmpk.24.300. PubMed DOI

Curry S., Brick P., Franks N.P. Fatty acid binding to human serum albumin: New insights from crystallographic studies. Biochim. Biophys. Acta Gen. Subj. 1999;1441:131–140. doi: 10.1016/S1388-1981(99)00148-1. PubMed DOI

Fujiwara S.I., Amisaki T. Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method. Biophys. J. 2008;94:95–103. doi: 10.1529/biophysj.107.111377. PubMed DOI PMC

Fanali G., Di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI

Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol. 2006;361:336–351. doi: 10.1016/j.jmb.2006.06.028. PubMed DOI

Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., Notari S., Ascenzi P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life. 2005;57:787–796. doi: 10.1080/15216540500404093. PubMed DOI

Ascenzi P., Fasano M. Allostery in a monomeric protein: The case of human serum albumin. Biophys. Chem. 2010;148:16–22. doi: 10.1016/j.bpc.2010.03.001. PubMed DOI

Oleszko A., Hartwich J., Gąsior-Głogowska M., Olsztyńska-Janus S. Changes of albumin secondary structure after palmitic acid binding. FT-IR spectroscopic study. Acta Bioeng. Biomech. 2018;20:59–64. PubMed

Michnik A. Thermal stability of bovine serum albumin DSC study. J. Therm. Anal. Calorim. 2003;71:509–519. doi: 10.1023/A:1022851809481. DOI

Leggio C., Galantini L., Konarev P.V., Pavel N.V. Urea-induced denaturation process on defatted human serum albumin and in the presence of palmitic acid. J. Phys. Chem. B. 2009;113:12590–12602. doi: 10.1021/jp904330v. PubMed DOI

Yu D., Feng L., Fang X. In situ Fourier-transform infrared spectroscopy monitoring of the effect of microwaves on bovine serum albumin. RSC Adv. 2013;3:21381–21385. doi: 10.1039/c3ra42535e. DOI

Russell B.A., Garton A., Alshammari A.S., Birch D.J.S., Chen Y. Sudlow site II of human serum albumin remains functional after gold nanocluster encapsulation: A fluorescence-based drug binding study of L-Dopa. Methods Appl. Fluoresc. 2018;6:035017. doi: 10.1088/2050-6120/aacdee. PubMed DOI

Russell B.A., Mulheran P.A., Birch D.J.S., Chen Y. Probing the Sudlow binding site with warfarin: How does gold nanocluster growth alter human serum albumin? Phys. Chem. Chem. Phys. 2016;18:22874–22878. doi: 10.1039/C6CP03428D. PubMed DOI

Russell B.A., Jachimska B., Kralka I., Mulheran P.A., Chen Y. Human serum albumin encapsulated gold nanoclusters: Effects of cluster synthesis on natural protein characteristics. J. Mater. Chem. B. 2016;4:6876–6882. doi: 10.1039/C6TB01827K. PubMed DOI

Chevrier D.M., Thanthirige V.D., Luo Z., Driscoll S., Cho P., Macdonald M.A., Yao Q., Guda R., Xie J., Johnson E.R., et al. Structure and formation of highly luminescent protein-stabilized gold clusters. Chem. Sci. 2018;9:2782–2790. doi: 10.1039/C7SC05086K. PubMed DOI PMC

Chuang K.T., Lin Y.W. Microwave-assisted formation of gold nanoclusters capped in bovine serum albumin and exhibiting red or blue emission. J. Phys. Chem. C. 2017;121:26997–27003. doi: 10.1021/acs.jpcc.7b09349. DOI

Bhattacharya A.A., Grüne T., Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 2000;303:721–732. doi: 10.1006/jmbi.2000.4158. PubMed DOI

Brouwer A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report) Pure Appl. Chem. 2011;83:2213–2228. doi: 10.1351/PAC-REP-10-09-31. DOI

Dutta D., Chattopadhyay A., Ghosh S.S. Cationic BSA templated Au-Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomater. Sci. Eng. 2016;2:2090–2098. doi: 10.1021/acsbiomaterials.6b00517. PubMed DOI

Micsonai A., Wien F., Kernya L., Lee Y.-H., Goto Y., Réfrégiers M., Kardos J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA. 2015;112:E3095–E3103. doi: 10.1073/pnas.1500851112. PubMed DOI PMC

Micsonai A., Wien F., Bulyáki É., Kun J., Moussong É., Lee Y.H., Goto Y., Réfrégiers M., Kardos J. BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018;46:W315–W322. doi: 10.1093/nar/gky497. PubMed DOI PMC

Shang L., Wang Y., Jiang J., Dong S. PH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir. 2007;23:2714–2721. doi: 10.1021/la062064e. PubMed DOI

Chaudhari K., Xavier P.L., Pradeep T. Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano. 2011;5:8816–8827. doi: 10.1021/nn202901a. PubMed DOI

Zhang M., Dang Y.Q., Liu T.Y., Li H.W., Wu Y., Li Q., Wang K., Zou B. Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein. J. Phys. Chem. C. 2013;117:639–647. doi: 10.1021/jp309175k. DOI

Pajović J.D., Dojčilović R., Božanić D.K., Kaščáková S., Réfrégiers M., Dimitrijević-Branković S., Vodnik V.V., Milosavljević A.R., Piscopiello E., Luyt A.S., et al. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. Colloid Surf. B. 2015;135:742–750. doi: 10.1016/j.colsurfb.2015.08.050. PubMed DOI

Rawat K.A., Bhamore J.R., Singhal R.K., Kailasa S.K. Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples. Biosens. Bioelectron. 2017;88:71–77. doi: 10.1016/j.bios.2016.07.069. PubMed DOI

Tomita R.J., De Matos R.A., Vallim M.A., Courrol L.C. A simple and effective method to synthesize fluorescent nanoparticles using tryptophan and light and their lethal effect against bacteria. J. Photochem. Photobiol. B. 2014;140:157–162. doi: 10.1016/j.jphotobiol.2014.07.015. PubMed DOI

Kong J., Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biotechnol. Biophys. Sin. 2007;39:549–559. doi: 10.1111/j.1745-7270.2007.00320.x. PubMed DOI

Cao X.L., Li H.W., Yue Y., Wu Y. PH-Induced conformational changes of BSA in fluorescent AuNCs@BSA and its effects on NCs emission. Vib. Spectrosc. 2013;65:186–192. doi: 10.1016/j.vibspec.2013.01.004. DOI

Yue Y., Li H.W., Liu T.Y., Wu Y. Exploring the role of ligand-BSA in the response of BSA-protected gold-nanoclusters to silver (I) ions by FT-IR and circular dichroism spectra. Vib. Spectrosc. 2014;74:137–141. doi: 10.1016/j.vibspec.2014.04.005. DOI

Soleilhac A., Bertorelle F., Antoine R. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements. Spectrochim. Acta A. 2018;193:283–288. doi: 10.1016/j.saa.2017.12.025. PubMed DOI

Sharma A., Agarwal P.K., Deep S. Characterization of different conformations of bovine serum albumin and their propensity to aggregate in the presence of N-cetyl-N,N,N-trimethyl ammonium bromide. J. Colloid Interface Sci. 2010;343:454–462. doi: 10.1016/j.jcis.2009.12.012. PubMed DOI

Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI

Donaldson K., Poland C.A., Schins R.P.F. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology. 2010;4:414–420. doi: 10.3109/17435390.2010.482751. PubMed DOI

Ai J., Biazar E., Jafarpour M., Montazeri M., Majdi A., Zafari M., Akbari H.R., Rad H.G. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomed. 2011;6:1117–1127. PubMed PMC

Patra H.K., Banerjee S., Chaudhuri U., Lahiri P., Dasgupta A.K. Cell selective response to gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007;3:111–119. doi: 10.1016/j.nano.2007.03.005. PubMed DOI

Gannon C.J., Patra C.R., Bhattacharya R., Mukherjee P., Curley S.A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 2008;6:1–9. doi: 10.1186/1477-3155-6-2. PubMed DOI PMC

Lee Y.J., Ahn E.Y., Park Y. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res. Lett. 2019;14:1–14. doi: 10.1186/s11671-019-2967-1. PubMed DOI PMC

Steckiewicz K.P., Barcinska E., Malankowska A., Zauszkiewicz–Pawlak A., Nowaczyk G., Zaleska-Medynska A., Inkielewicz-Stepniak I. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J. Mater. Sci. Mater. Med. 2019;30:1–15. doi: 10.1007/s10856-019-6221-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...