Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging

. 2022 Apr 22 ; 12 (9) : . [epub] 20220422

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35564133

Grantová podpora
19-03207S Grant Agency of the Czech Republic
IGA_PrF_2021_003 Internal Grant Agency of Palacký University
IGA_PrF_2022_003 Internal Grant Agency of Palacký University
LM2018129 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/18_046/0016045 ERDF
CZ.02.1.01/0.0/0.0/16_013/0001775 ERDF
CZ.02.1.01/0.0/0.0/16_019/0000754 ERDF/ESF

Bovine serum albumin-embedded Au nanoclusters (BSA-AuNCs) are thoroughly probed by continuous wave electron paramagnetic resonance (CW-EPR), light-induced EPR (LEPR), and sequences of microscopic investigations performed via high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray analysis (EDS). To the best of our knowledge, this is the first report analyzing the BSA-AuNCs by CW-EPR/LEPR technique. Besides the presence of Au(0) and Au(I) oxidation states in BSA-AuNCs, the authors observe a significant amount of Au(II), which may result from a disproportionation event occurring within NCs: 2Au(I) → Au(II) + Au(0). Based on the LEPR experiments, and by comparing the behavior of BSA versus BSA-AuNCs under UV light irradiation (at 325 nm) during light off-on-off cycles, any energy and/or charge transfer event occurring between BSA and AuNCs during photoexcitation can be excluded. According to CW-EPR results, the Au nano assemblies within BSA-AuNCs are estimated to contain 6-8 Au units per fluorescent cluster. Direct observation of BSA-AuNCs by STEM and HR-TEM techniques confirms the presence of such diameters of gold nanoclusters in BSA-AuNCs. Moreover, in situ formation and migration of Au nanostructures are observed and evidenced after application of either a focused electron beam from HR-TEM, or an X-ray from EDS experiments.

Zobrazit více v PubMed

Xie J., Zheng Y., Ying J.Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009;131:888–889. doi: 10.1021/ja806804u. PubMed DOI

Simms G.A., Padmos J.D., Zhang P. Structural and Electronic Properties of Protein/Thiolate-Protected Gold Nanocluster with “Staple” Motif: A XAS, L-DOS, and XPS Study. J. Chem. Phys. 2009;131:214703. doi: 10.1063/1.3268782. PubMed DOI

Dixon J.M., Egusa S. Conformational Change-Induced Fluorescence of Bovine Serum Albumin-Gold Complexes. J. Am. Chem. Soc. 2018;140:2265–2271. doi: 10.1021/jacs.7b11712. PubMed DOI

Chuang K.T., Lin Y.W. Microwave-Assisted Formation of Gold Nanoclusters Capped in Bovine Serum Albumin and Exhibiting Red or Blue Emission. J. Phys. Chem. C. 2017;121:26997–27003. doi: 10.1021/acs.jpcc.7b09349. DOI

Antonello S., Perera N.V., Ruzzi M., Gascón J.A., Maran F. Interplay of Charge State, Lability, and Magnetism in the Molecule-like Au25(SR)18 Cluster. J. Am. Chem. Soc. 2013;135:15585–15594. doi: 10.1021/ja407887d. PubMed DOI

Zeng C., Weitz A., Withers G., Higaki T., Zhao S., Chen Y., Gil R.R., Hendrich M., Jin R. Controlling Magnetism of Au133(TBBT)52 Nanoclusters at Single Electron Level and Implication for Nonmetal to Metal Transition. Chem. Sci. 2019;10:9684–9691. doi: 10.1039/C9SC02736J. PubMed DOI PMC

Wen X., Yu P., Toh Y.R., Tang J. Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters. J. Phys. Chem. C. 2012;116:11830–11836. doi: 10.1021/jp303530h. DOI

Wen X., Yu P., Toh Y.R., Hsu A.C., Lee Y.C., Tang J. Fluorescence Dynamics in BSA-Protected Au25 Nanoclusters. J. Phys. Chem. C. 2012;116:19032–19038. doi: 10.1021/jp305902w. DOI

Raut S., Chib R., Butler S., Borejdo J., Gryczynski Z., Gryczynski I. Evidence of Energy Transfer from Tryptophan to BSA/HSA Protected Gold Nanoclusters. Methods Appl. Fluoresc. 2014;2:035004. doi: 10.1088/2050-6120/2/3/035004. PubMed DOI

Russell B.A., Kubiak-Ossowska K., Mulheran P.A., Birch D.J.S., Chen Y. Locating the Nucleation Sites for Protein Encapsulated Gold Nanoclusters: A Molecular Dynamics and Fluorescence Study. Phys. Chem. Chem. Phys. 2015;17:21935–21941. doi: 10.1039/C5CP02380G. PubMed DOI

Chang H., Karan N.S., Shin K., Bootharaju M.S., Nah S., Chae S.I., Baek W., Lee S., Kim J., Son Y.J., et al. Highly Fluorescent Gold Cluster Assembly. J. Am. Chem. Soc. 2021;143:326–334. doi: 10.1021/jacs.0c10907. PubMed DOI

Cao X.L., Li H.W., Yue Y., Wu Y. PH-Induced Conformational Changes of BSA in Fluorescent AuNCs@BSA and Its Effects on NCs Emission. Vib. Spectrosc. 2013;65:186–192. doi: 10.1016/j.vibspec.2013.01.004. DOI

Cui M., Zhao Y., Song Q. Synthesis, Optical Properties and Applications of Ultra-Small Luminescent Gold Nanoclusters. TrAC—Trends Anal. Chem. 2014;57:73–82. doi: 10.1016/j.trac.2014.02.005. DOI

Bhowal A.C., Pandit S., Kundu S. Fluorescence Emission and Interaction Mechanism of Protein-Coated Gold and Copper Nanoclusters as Ion Sensors in Different Ionic Environments. J. Phys. D. Appl. Phys. 2019;52:015302. doi: 10.1088/1361-6463/aae447. DOI

Hsu N.Y., Lin Y.W. Microwave-Assisted Synthesis of Bovine Serum Albumin-Gold Nanoclusters and Their Fluorescence-Quenched Sensing of Hg2+ Ions. New J. Chem. 2016;40:1155–1161. doi: 10.1039/C5NJ02263K. DOI

Lin H., Imakita K., Fujii M., Sun C., Chen B., Kanno T., Sugimoto H. New Insights into the Red Luminescent Bovine Serum Albumin Conjugated Gold Nanospecies. J. Alloys Compd. 2017;691:860–865. doi: 10.1016/j.jallcom.2016.08.300. DOI

Chib R., Butler S., Raut S., Shah S., Borejdo J., Gryczynski Z., Gryczynski I. Effect of Quencher, Denaturants, Temperature and PH on the Fluorescent Properties of BSA Protected Gold Nanoclusters. J. Lumin. 2015;168:62–68. doi: 10.1016/j.jlumin.2015.07.030. PubMed DOI PMC

Kawasaki H., Hamaguchi K., Osaka I., Arakawa R. Ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater. 2011;21:3508–3515. doi: 10.1002/adfm.201100886. DOI

Liu J., Duchesne P.N., Yu M., Jiang X., Ning X., Vinluan R.D., III, Zhang P., Zheng J. Luminescent Gold Nanoparticles with Size-Independent Emission. Angew. Chem. 2016;128:9040–9044. doi: 10.1002/ange.201602795. PubMed DOI PMC

Liu C., Zhang X., Han X., Fang Y., Liu X., Wang X., Waterhouse G.I.N., Xu C., Yin H., Gao X. Polypeptide-Templated Au Nanoclusters with Red and Blue Fluorescence Emissions for Multimodal Imaging of Cell Nuclei. ACS Appl. Bio Mater. 2020;3:1934–1943. doi: 10.1021/acsabm.9b01078. PubMed DOI

Shang L., Stockmar F., Azadfar N., Nienhaus G.U. Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew. Chem. Int. Ed. 2013;52:11154–11157. doi: 10.1002/anie.201306366. PubMed DOI

Wei Z., Pan Y., Hou G., Ran X., Chi Z., He Y., Kuang Y., Wang X., Liu R., Guo L. Excellent Multiphoton Excitation Fluorescence with Large Multiphoton Absorption Cross Sections of Arginine-Modified Gold Nanoclusters for Bioimaging. ACS Appl. Mater. Interfaces. 2022;14:2452–2463. doi: 10.1021/acsami.1c16324. PubMed DOI

Wen F., Dong Y., Feng L., Wang S., Zhang S., Zhang X. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem. 2011;83:1193–1196. doi: 10.1021/ac1031447. PubMed DOI

Wu Z. Anti-Galvanic Reduction of Thiolate-Protected Gold and Silver Nanoparticles. Angew. Chem. 2012;51:2934–2938. doi: 10.1002/anie.201107822. PubMed DOI

Wu Z., Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010;10:2568–2573. doi: 10.1021/nl101225f. PubMed DOI

Wu Y.T., Shanmugam C., Tseng W.B., Hiseh M.M., Tseng W.L. A Gold Nanocluster-Based Fluorescent Probe for Simultaneous PH and Temperature Sensing and Its Application to Cellular Imaging and Logic Gates. Nanoscale. 2016;8:11210–11216. doi: 10.1039/C6NR02341J. PubMed DOI

Xu Y., Sherwood J., Qin Y., Crowley D., Bonizzoni M., Bao Y. The Role of Protein Characteristics in the Formation and Fluorescence of Au Nanoclusters. Nanoscale. 2014;6:1515–1524. doi: 10.1039/C3NR06040C. PubMed DOI

Yue Y., Liu T.Y., Li H.W., Liu Z., Wu Y. Microwave-Assisted Synthesis of BSA-Protected Small Gold Nanoclusters and Their Fluorescence-Enhanced Sensing of Silver(i) Ions. Nanoscale. 2012;4:2251–2254. doi: 10.1039/c2nr12056a. PubMed DOI

Yue Y., Li H.W., Liu T.Y., Wu Y. Exploring the Role of Ligand-BSA in the Response of BSA-Protected Gold-Nanoclusters to Silver (I) Ions by FT-IR and Circular Dichroism Spectra. Vib. Spectrosc. 2014;74:137–141. doi: 10.1016/j.vibspec.2014.04.005. DOI

Zhang M., Dang Y.Q., Liu T.Y., Li H.W., Wu Y., Li Q., Wang K., Zou B. Pressure-Induced Fluorescence Enhancement of the BSA-Protected Gold Nanoclusters and the Corresponding Conformational Changes of Protein. J. Phys. Chem. C. 2013;117:639–647. doi: 10.1021/jp309175k. DOI

Zhou M., Du X., Wang H., Jin R. The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS Nano. 2021;15:13980–13992. doi: 10.1021/acsnano.1c04705. PubMed DOI

Govindaraju S., Ankireddy S.R., Viswanath B., Kim J., Yun K. Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal Fluid. Sci. Rep. 2017;7:1–12. doi: 10.1038/srep40298. PubMed DOI PMC

Chang T.K., Cheng T.M., Chu H.L., Tan S.H., Kuo J.C., Hsu P.H., Su C.Y., Chen H.M., Lee C.M., Kuo T.R. Metabolic Mechanism Investigation of Antibacterial Active Cysteine-Conjugated Gold Nanoclusters in Escherichia Coli. ACS Sustain. Chem. Eng. 2019;7:15479–15486. doi: 10.1021/acssuschemeng.9b03048. DOI

Le Guével X., Hötzer B., Jung G., Hollemeyer K., Trouillet V., Schneider M. Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. J. Phys. Chem. C. 2011;115:10955–10963. doi: 10.1021/jp111820b. DOI

Li H.W., Yue Y., Liu T.Y., Li D., Wu Y. Fluorescence-Enhanced Sensing Mechanism of BSA-Protected Small Gold-Nanoclusters to Silver(I) Ions in Aqueous Solutions. J. Phys. Chem. C. 2013;117:16159–16165. doi: 10.1021/jp403466b. DOI

Wang X., Wu P., Hou X., Lv Y. An Ascorbic Acid Sensor Based on Protein-Modified Au Nanoclusters. Analyst. 2013;138:229–233. doi: 10.1039/C2AN36112D. PubMed DOI

Burt J.L., Gutiérrez-Wing C., Miki-Yoshida M., José-Yacamán M. Noble-Metal Nanoparticles Directly Conjugated to Globular Proteins. Langmuir. 2004;20:11778–11783. doi: 10.1021/la048287r. PubMed DOI

Zhang L., Wang E. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging. Nano Today. 2014;9:132–157. doi: 10.1016/j.nantod.2014.02.010. DOI

Zheng J., Zhou C., Yu M., Liu J. Different Sized Luminescent Gold Nanoparticles. Nanoscale. 2012;4:4073–4083. doi: 10.1039/c2nr31192e. PubMed DOI PMC

Yamamoto M., Osaka I., Yamashita K., Hasegawa H., Arakawa R., Kawasaki H. Effects of Ligand Species and Cluster Size of Biomolecule-Protected Au Nanoclusters on Eff Iciency of Singlet-Oxygen Generation. J. Lumin. 2016;180:315–320. doi: 10.1016/j.jlumin.2016.08.059. DOI

Andrýsková P., Šišková K.M., Michetschlägerová Š., Jiráková K., Kubala M., Jirák D. The Effect of Fatty Acids and Bsa Purity on Synthesis and Properties of Fluorescent Gold Nanoclusters. Nanomaterials. 2020;10:343. doi: 10.3390/nano10020343. PubMed DOI PMC

Yan L., Cai Y., Zheng B., Yuan H., Guo Y., Xiao D., Choi M.M.F. Microwave-Assisted Synthesis of BSA-Stabilized and HSA-Protected Gold Nanoclusters with Red Emission. J. Mater. Chem. 2012;22:1000–1005. doi: 10.1039/C1JM13457D. DOI

Shang L., Dong S., Nienhaus G.U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Today. 2011;6:401–418. doi: 10.1016/j.nantod.2011.06.004. DOI

Sonia, Komal, Kukreti S., Kaushik M. Gold Nanoclusters: An Ultrasmall Platform for Multifaceted Applications. Talanta. 2021;234:122623. doi: 10.1016/j.talanta.2021.122623. PubMed DOI

Nienhaus K., Wang H., Nienhaus G.U. Nanoparticles for Biomedical Applications: Exploring and Exploiting Molecular Interactions at the Nano-Bio Interface. Mater. Today Adv. 2020;5:100036. doi: 10.1016/j.mtadv.2019.100036. DOI

Zheng Y., Lai L., Liu W., Jiang H., Wang X. Recent Advances in Biomedical Applications of Fluorescent Gold Nanoclusters. Adv. Colloid Interface Sci. 2017;242:1–16. doi: 10.1016/j.cis.2017.02.005. PubMed DOI

Zhu M., Aikens C.M., Hollander F.J., Schatz G.C., Jin R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 2008;130:5883–5885. doi: 10.1021/ja801173r. PubMed DOI

Zhu M., Lanni E., Garg N., Bier M.E., Jin R. Kinetically Controlled, High-Yield Synthesis of Au25 Clusters. J. Am. Chem. Soc. 2008;130:1138–1139. doi: 10.1021/ja0782448. PubMed DOI

Zhu M., Aikens C.M., Hendrich M.P., Gupta R., Qian H., Schatz G.C., Jin R. Reversible Switching of Magnetism in Thiolate-Protected Au25 Superatoms. J. Am. Chem. Soc. 2009;131:2490–2492. doi: 10.1021/ja809157f. PubMed DOI

Schmidbaur H. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. 2000;33:3–10. doi: 10.1007/BF03215477. DOI

Schmidbaur H., Schier A. A Briefing on Aurophilicity. Chem. Soc. Rev. 2008;37:1931–1951. doi: 10.1039/b708845k. PubMed DOI

Schmidbaur H., Schier A. Aurophilic Interactions as a Subject of Current Research: An up-Date. Chem. Soc. Rev. 2012;41:370–412. doi: 10.1039/C1CS15182G. PubMed DOI

Wu Z., Du Y., Liu J., Yao Q., Chen T., Cao Y., Zhang H., Xie J. Aurophilic Interactions in the Self-Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. Angew. Chem. Int. Ed. 2019;58:8139–8144. doi: 10.1002/anie.201903584. PubMed DOI

Rehman F.U., Du T., Shaikh S., Jiang X., Chen Y., Li X., Yi H., Hui J., Chen B., Selke M., et al. Nano in Nano: Biosynthesized Gold and Iron Nanoclusters Cargo Neoplastic Exosomes for Cancer Status Biomarking. Nanomed. Nanotechnol. Biol. Med. 2018;14:2619–2631. doi: 10.1016/j.nano.2018.07.014. PubMed DOI

Fernández-Iglesias N., Bettmer J. Synthesis, Purification and Mass Spectrometric Characterisation of a Fluorescent Au9@BSA Nanocluster and Its Enzymatic Digestion by Trypsin. Nanoscale. 2014;6:716–721. doi: 10.1039/C3NR04217K. PubMed DOI

Mathew M.S., Baksi A., Pradeep T., Joseph K. Choline-Induced Selective Fluorescence Quenching of Acetylcholinesterase Conjugated Au@BSA Clusters. Biosens. Bioelectron. 2016;81:68–74. doi: 10.1016/j.bios.2016.02.048. PubMed DOI

Hori H., Teranishi T., Nakae Y., Seino Y., Miyake M., Yamada S. Anomalous Magnetic Polarization Effect of Pd and Au Nano-Particles. Phys. Lett. Sect. A Gen. At. Solid State Phys. 1999;263:406–410. doi: 10.1016/S0375-9601(99)00742-2. DOI

Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 1994;7:801–802. doi: 10.1039/C39940000801. DOI

Gréget R., Nealon G., Vileno B., Turek P., Mény C., Ott F., Derory A., Voirin E., Rivière E., Rogalev A., et al. Magnetic Properties of Gold Nanoparticles A Room-Temperature Quantum Effect. ChemPhysChem. 2012;13:3092–3097. doi: 10.1002/cphc.201200394. PubMed DOI

Muñoz-Márquez M.A., Guerrero E., Fernández A., Crespo P., Hernando A., Lucena R., Conesa J.C. Permanent Magnetism in Phosphine- and Chlorine-Capped Gold: From Clusters to Nanoparticles. J. Nanoparticle Res. 2010;12:1307–1318. doi: 10.1007/s11051-010-9862-0. DOI

Crespo P., García M.A., Fernández Pinel E., Multigner M., Alcántara D., De La Fuente J.M., Penadés S., Hernando A. Fe Impurities Weaken the Ferromagnetic Behavior in Au Nanoparticles. Phys. Rev. Lett. 2006;97:1–4. doi: 10.1103/PhysRevLett.97.177203. PubMed DOI

Cirri A., Silakov A., Jensen L., Lear B.J. Probing Ligand-Induced Modulation of Metallic States in Small Gold Nanoparticles Using Conduction Electron Spin Resonance. Phys. Chem. Chem. Phys. 2016;18:25443–25451. doi: 10.1039/C6CP02205G. PubMed DOI

Donnio B., García-Vázquez P., Gallani J.-L., Guillon D., Terazzi E. Dendronized Ferromagnetic Gold Nanoparticles Self-Organized in a Thermotropic Cubic Phase. Adv. Mater. 2007;19:3534–3539. doi: 10.1002/adma.200701252. DOI

Cirri A., Silakov A., Lear B.J. Ligand Control over the Electronic Properties within the Metallic Core of Gold Nanoparticles. Angew. Chem. Int. Ed. 2015;54:11750–11753. doi: 10.1002/anie.201505933. PubMed DOI

Yamamoto Y., Miura T., Suzuki M., Kawamura N., Miyagawa H., Nakamura T., Kobayashi K., Teranishi T., Hori H. Direct Observation of Ferromagnetic Spin Polarization in Gold Nanoparticles. Phys. Rev. Lett. 2004;93:1–4. doi: 10.1103/PhysRevLett.93.116801. PubMed DOI

Cirri A., Silakov A., Jensen L., Lear B.J. Chain Length and Solvent Control over the Electronic Properties of Alkanethiolate-Protected Gold Nanoparticles at the Molecule-to-Metal Transition. J. Am. Chem. Soc. 2016;138:15987–15993. doi: 10.1021/jacs.6b09586. PubMed DOI

Agrachev M., Antonello S., Dainese T., Ruzzi M., Zoleo A., Aprà E., Govind N., Fortunelli A., Sementa L., Maran F. Magnetic Ordering in Gold Nanoclusters. ACS Omega. 2017;2:2607–2617. doi: 10.1021/acsomega.7b00472. PubMed DOI PMC

Lassmann G., Kolberg M., Bleifuss G., Gräslund A., Sjöberg B.M., Lubitz W. Protein Thiyl Radicals in Disordered Systems: A Comparative Epr Study at Low Temperature. Phys. Chem. Chem. Phys. 2003;5:2442–2453. doi: 10.1039/B302601A. DOI

Silvester Julie A., Timmins Graham S.D. Photodynamically Generated Bovine Serum Albumin Radicals: Evidence for Damage Transfer and Oxidation at Cysteine and Tryptophan Residues. Free Radic. Biol. Med. 1998;24:754–766. doi: 10.1016/S0891-5849(97)00327-4. PubMed DOI

Rurack K., Spieles M. Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600–1000 Nm. Anal. Chem. 2011;83:1232–1242. doi: 10.1021/ac101329h. PubMed DOI

Lyons S.K., Patrick P.S., Brindle K.M. Imaging Mouse Cancer Models in Vivo Using Reporter Transgenes. Cold Spring Harb. Protoc. 2013;2013:685–699. doi: 10.1101/pdb.top069864. PubMed DOI

Nealon G.L., Donnio B., Greget R., Kappler J.P., Terazzi E., Gallani J.L. Magnetism in Gold Nanoparticles. Nanoscale. 2012;4:5244–5258. doi: 10.1039/c2nr30640a. PubMed DOI

Chevrier D.M., Thanthirige V.D., Luo Z., Driscoll S., Cho P., Macdonald M.A., Yao Q., Guda R., Xie J., Johnson E.R., et al. Structure and Formation of Highly Luminescent Protein-Stabilized Gold Clusters. Chem. Sci. 2018;9:2782–2790. doi: 10.1039/C7SC05086K. PubMed DOI PMC

Hsu Y.C., Hung M.J., Chen Y.A., Wang T.F., Ou Y.R., Chen S.H. Identifying Reducing and Capping Sites of Protein-Encapsulated Gold Nanoclusters. Molecules. 2019;24:1630. doi: 10.3390/molecules24081630. PubMed DOI PMC

Anderson P.W. New Approach to the Theory of Superexchange Interactions. Career Theor. Phys. A 2nd Ed. 2005;115:100–111. doi: 10.1142/9789812567154_0009. DOI

Andres J., Longo E., Gouveia A.F., Gracia L., Oliveira M.C. In Situ Formation of Metal Nanoparticles through Electron Beam Irradiation: Modeling Real Materials from First-Principles Calculations. J. Mater. Sci. Eng. 2018;7:3. doi: 10.4172/2169-0022.1000461. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...