Mixtures of L-amino acids as reaction medium for formation of iron nanoparticles: the order of addition into a ferrous salt solution matters
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24071943
PubMed Central
PMC3821566
DOI
10.3390/ijms141019452
PII: ijms141019452
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie MeSH
- magnetismus metody MeSH
- nanočástice chemie MeSH
- oxidace-redukce MeSH
- roztoky chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- roztoky MeSH
- železo MeSH
Owing to Mössbauer spectroscopy, an advanced characterization technique for iron-containing materials, the present study reveals previously unknown possibilities using l-amino acids for the generation of magnetic particles. Based on our results, a simple choice of the order of l-amino acids addition into a reaction mixture containing ferrous ions leads to either superparamagnetic ferric oxide/oxyhydroxide particles, or magnetically strong Fe0-Fe2O3/FeOOH core-shell particles after chemical reduction. Conversely, when ferric salts are employed with the addition of selected l-amino acids, only Fe0-Fe2O3/FeOOH core-shell particles are observed, regardless of the addition order. We explain this phenomenon by a specific transient/intermediate complex formation between Fe2+ and l-glutamic acid. This type of complexation prevents ferrous ions from spontaneous oxidation in solutions with full air access. Moreover, due to surface-enhanced Raman scattering spectroscopy we show that the functional groups of l-amino acids are not destroyed during the borohydride-induced reduction. These functionalities can be further exploited for (i) attachment of l-amino acids to the as-prepared magnetic particles, and (ii) for targeted bio- and/or environmental applications where the surface chemistry needs to be tailored and directed toward biocompatible species.
Zobrazit více v PubMed
Papaefthymiou G.C. Nanoparticle magnetism. Nano Today. 2009;4:438–447.
Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. PubMed
Zhang L., Fang M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today. 2010;5:128–142.
Noubactep C., Care S., Crane R. Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 2012;223:1363–1382. PubMed PMC
Machala L., Zboril R., Gedanken A. Amorphous iron(III) oxide—A review. J. Phys. Chem. B. 2007;111:4003–4018. PubMed
Machala L., Tucek J., Zboril R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011;23:3255–3272.
Cornell R.M., Schwertmann U. The Iron Oxides. Structure, Properties, Reactions, Occurences and Uses. 2nd ed. Wiley-VCH; Weinheim, Germany: 2003. pp. 59–94.
Siskova K., Tucek J., Machala L., Otyepkova E., Filip J., Safarova K., Pechousek J., Zboril R. Air-stable nZVI formation mediated by glutamic acid: Solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment. J. Nanopart. Res. 2012;14:1–13. PubMed
Siskova K.M., Straska J., Krizek M., Tucek J., Machala L., Zboril R. Formation of zero-valent iron nanoparticles mediated by amino acids. Procedia Environ. Sci. 2013;18:809–817.
Greenwood N.N., Gibb T.C. Mössbauer Spectroscopy. 1st ed. Chapman and Hall Ltd.; London, UK: 1971. pp. 1–110.
Vertes A., Korecz L., Burger K. Mössbauer Spectroscopy. 1st ed. Elsevier Scientific Publishing Company; Amsterdam, The Netherlands: 1979. pp. 13–122.
Kuhn L.T., Bojesen A., Timmermann L., Nielsen M.M., Morup S. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J. Phys. 2002;14:13551–13567.
Sun Y.-P., Li X.-Q., Cao J., Zhang W.-X., Wang H.P. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 2006;120:47–56. PubMed
Nadagouda M.N., Castle A.B., Murdock R.C., Hussain S.M., Varma R.S. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 2010;12:114–122.
Wang Q., Snyder S., Kim J., Choi H. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity. Environ. Sci. Technol. 2009;43:3292–3299. PubMed
Durmus Z., Kavas H., Toprak M.S., Baykal A., Altincekic T.G., Aslan A., Bozkurt A., Cosgun S. l-lysine coated iron oxide nanoparticles: Synthesis, structural and conductivity characterization. J. Alloys Compd. 2009;484:371–376.
Marinescu G., Patron L., Culita D.C., Neagoe C., Lepadatu C.I., Balint I., Bessais L., Cizmas C.B. Synthesis of magnetite nanoparticles in the presence of aminoacids. J. Nanopart. Res. 2006;8:1045–1051.
Mantion A., Gozzo F., Schmitt B., Stern W.B., Gerber Y., Robin A.Y., Fromm K.M., Painsi M., Taubert A. Amino acids in iron oxide mineralization: (incomplete) crystal phase selection is achieved even with single amino acids. J. Phys. Chem. C. 2008;112:12104–12110.
Sousa M.H., Rubim J.C., Sobrinho P.G., Tourinho F.A. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Magn. Mater. 2001;225:67–72.
Yang H.-M., Lee H.J., Jang K.-S., Park C.W., Yang H.W., Heo W.D., Kim J.-D. Poly(amino acid)-coated iron oxide nanoparticles as ultra-small magnetic resonance probes. J. Mater. Chem. 2009;19:4566–4574.
Brown S. Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. Proc. Natl. Acad. Sci. USA. 1992;89:8651–8655. PubMed PMC
Brown S., Sarikaya M., Johnson E. A genetic analysis of crystal growth. J. Mol. Biol. 2000;299:725–735. PubMed
Venkateswara Rao P., Holm R.H. Synthetic analogues of the active sites of iron-sulfur proteins. Chem. Rev. 2004;104:527–559. PubMed
Arakaki A., Webb J., Matsunaga T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 2003;278:8745–8750. PubMed
Prozorov T., Mallapragada S.K., Narasimhan B., Wang L., Palo P., Nilsen-Hamilton M., Williams T.J., Bazylinski D.A., Prozorov R., Canfield P.C. Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 2007;17:951–957.
Matrajt G., Blanot D. Properties of synthetic ferrihydrite as an amino acid adsorbent and a promoter of peptide bond formation. Amino Acids. 2004;26:153–158. PubMed
Wang Z., Zhu H., Wang X., Yang F., Yang X. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology. 2009;20 doi: 10.1088/0957-4484/20/46/465606.. PubMed DOI
Schneeweiss O., Zboril R., Mashlan M., Petrovsky E., Tucek J. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix. Nanotechnology. 2006;17:607–616.
Kneipp K., Moskovits M., Kneipp H. Surface-Enhanced Raman Scattering Physics and Applications. 1st ed. Springer-Verlag; Berlin, Germany: 2006. pp. 1–103.
Le Ru E., Etchegoin P. Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. 1st ed. Elsevier; Amsterdam, The Netherlands: 2009. pp. 1–27.
Siskova K., Becicka O., Masek V., Safarova K., Zboril R. Spacer-free SERRS spectra of unperturbed porphyrin detected at 100 fM concentration in Ag hydrosols prepared by modified Tollens method. J. Raman Spectrosc. 2012;43:689–691.
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 6th ed. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 1–31.
Munro C.H., Smith W.E., Garner M., Clarkson J., White P.C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced Raman scattering. Langmuir. 1995;11:3712–3720.
Siskova K., Vlckova B., Turpin P.-Y., Thorel A., Prochazka M. Laser ablation of silver in aqueous solutions of organic species: Probing Ag nanoparticle-adsorbate systems evolution by surface-enhanced Raman and surface plasmon extinction spectra. J. Phys. Chem. C. 2011;115:5404–5412.
Nogues J., Schuller I.K. Exchange bias. J. Magn. Magn. Mater. 1999;192:203–232.
Iglesias O., Labarta A., Batlle X. Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 2008;8:2761–2780. PubMed
O’Handley R.C. Modern Magnetic Materials, Principles and Applications. 1st ed. John Wiley & Sons; New York, NY, USA: 2000. pp. 1–740.
Batlle X., Labarta A. Finite-size effects in fine particles: Magnetic and transport properties. J. Phys. 2002;35:R15–R42.
Pechousek J., Jancik D., Frydrych J., Navarik J., Novak P. Setup of Mössbauer spectrometers at RCPTM. In: Tucek J., Machala L., editors. Mössbauer Spectroscopy in Materials Science. AIP Conference Proceedings; New York, NY, USA: 2012. pp. 186–193.