Characterization of Nanoparticles in Mixtures by Taylor Dispersion Analysis Hyphenated to Inductively Coupled Plasma Mass Spectrometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38529586
PubMed Central
PMC11007675
DOI
10.1021/acs.analchem.4c00586
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A novel methodology for investigating the behavior of nanoparticles in their mixtures in aqueous high-ionic strength conditions is presented in this work. Our approach utilizes Taylor dispersion analysis in capillaries connected to inductively coupled plasma mass spectrometry (ICP-MS) to probe metal-derived nanoparticles. This methodology simultaneously distinguishes between different kinds of nanoparticles and accurately determines their essential parameters, such as hydrodynamic size, diffusion coefficient, and elemental composition. Moreover, the isotope-specific ICP-MS detection allows for unique targeting of the fate of isotopically enriched nanoparticles. The complexity of our methodology opens the way for studying barely explored areas of interparticle interactions or unequivocal characterization of one type of nanoparticle in complex mixtures without any need for calibration as well as labor-consuming sample preparation.
Zobrazit více v PubMed
De Luis B.; Llopis-Lorente A.; Sancenón F.; Martínez-Máñez R. Engineering chemical communication between micro/nanosystems. Chem. Soc. Rev. 2021, 50, 8829–8856. 10.1039/D0CS01048K. PubMed DOI
Sajid M.; Plotka-Wasylka J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchem. J. 2020, 154, 104623.10.1016/j.microc.2020.104623. DOI
Li C.; Qin X.; Zhang Z.; Lv Y.; Zhang S.; Fan Y.; Liang S.; Guo B.; Li Z.; Liu Y.; Luo D. Structure-activity collective properties underlying self-assembled superstructures. Nano Today 2022, 42, 101354.10.1016/j.nantod.2021.101354. DOI
Guo Y.; Tang N.; Guo J.; Lu L.; Li N.; Hu T.; Zhu Z.; Gao X.; Li X.; Jiang L.; Liang J. The aggregation of natural inorganic colloids in aqueous environment: A review. Chemosphere 2023, 310, 136805.10.1016/j.chemosphere.2022.136805. PubMed DOI
Boström M.; Williams D. R. M.; Ninham B. W. Specific Ion Effects: Why DLVO Theory Fails for Biology and Colloid Systems. Phys. Rev. Lett. 2001, 87, 168103.10.1103/PhysRevLett.87.168103. PubMed DOI
Pyrgiotakis G.; Blattmann C. O.; Pratsinis S.; Demokritou P. Nanoparticle–Nanoparticle Interactions in Biological Media by Atomic Force Microscopy. Langmuir 2013, 29, 11385–11395. 10.1021/la4019585. PubMed DOI PMC
Riedesel S.; Kaur R.; Bakshi M. S. Distinguishing Nanoparticle–Nanoparticle Interactions between Gold and Silver Nanoparticles Controlled by Gemini Surfactants: Stability of Nanocolloids. J. Phys. Chem. C 2021, 125, 5399–5411. 10.1021/acs.jpcc.1c00220. DOI
Kaur R.; Singh K.; Khullar P.; Gupta A.; Ahluwalia G. K.; Bakshi M. S. Applications of Molecular Structural Aspects of Gemini Surfactants in Reducing Nanoparticle–Nanoparticle Interactions. Langmuir 2019, 35, 14929–14938. 10.1021/acs.langmuir.9b02855. PubMed DOI
Kaur A.; Sandhu R. K.; Khullar P.; Singh K.; Ahluwalia G. K.; Bakshi M. S. Colloidal Stabilization of Sodium Dilauraminocystine for Selective Nanoparticle–Nanoparticle Interactions: Their Screening and Extraction by Iron Oxide Magnetic Nanoparticles. Langmuir 2021, 37, 6588–6599. 10.1021/acs.langmuir.1c00956. PubMed DOI
Moser M. R.; Baker C. A. Taylor dispersion analysis in fused silica capillaries: a tutorial review. Anal. Methods 2021, 13, 2357–2373. 10.1039/D1AY00588J. PubMed DOI
Trapiella-Alfonso L.; Ramírez-García G.; d’Orlyé F.; Varenne A. Electromigration separation methodologies for the characterization of nanoparticles and the evaluation of their behaviour in biological systems. TrAC, Trends Anal. Chem. 2016, 84, 121–130. 10.1016/j.trac.2016.04.022. DOI
Bello M. S.; Rezzonico R.; Righetti P. G. Use of Taylor-Aris Dispersion for Measurement of a Solute Diffusion Coefficient in Thin Capillaries. Science 1994, 266, 773–776. 10.1126/science.266.5186.773. PubMed DOI
d’Orlyé F.; Varenne A.; Gareil P. Determination of nanoparticle diffusion coefficients by Taylor dispersion analysis using a capillary electrophoresis instrument. J. Chromatogr. A 2008, 1204, 226–232. 10.1016/j.chroma.2008.08.008. PubMed DOI
Latunde-Dada S.; Bott R.; Hampton K.; Patel J.; Leszczyszyn O. I. Methodologies for the Taylor dispersion analysis for mixtures, aggregates and the mitigation of buffer mismatch effects. Anal. Methods 2015, 7, 10312–10321. 10.1039/C5AY02094H. DOI
Gouyon J.; Boudier A.; Barakat F.; Pallotta A.; Clarot I. Taylor dispersion analysis of metallic-based nanoparticles – A short review. Electrophoresis 2022, 43, 2377–2391. 10.1002/elps.202200184. PubMed DOI
Labied L.; Rocchi P.; Doussineau T.; Randon J.; Tillement O.; Lux F.; Hagege A. Taylor Dispersion Analysis Coupled to Inductively Coupled Plasma-Mass Spectrometry for Ultrasmall Nanoparticle Size Measurement: From Drug Product to Biological Media Studies. Anal. Chem. 2021, 93, 1254–1259. 10.1021/acs.analchem.0c03988. PubMed DOI
Labied L.; Rocchi P.; Doussineau T.; Randon J.; Tillement O.; Cottet H.; Lux F.; Hagege A. Biodegradation of metal-based ultra-small nanoparticles: A combined approach using TDA-ICP-MS and CE-ICP-MS. Anal. Chim. Acta 2021, 1185, 339081.10.1016/j.aca.2021.339081. PubMed DOI
Degasperi A.; Labied L.; Farre C.; Moreau E.; Martini M.; Chaix C.; Hagege A. Probing the protein corona of gold/silica nanoparticles by Taylor dispersion analysis-ICP-MS. Talanta 2022, 243, 123386.10.1016/j.talanta.2022.123386. PubMed DOI
Šebestová A.; Baron D.; Pechancová R.; Pluháček T.; Petr J. Determination of oxaliplatin enantiomers at attomolar levels by capillary electrophoresis connected with inductively coupled plasma mass spectrometry. Talanta 2019, 205, 120151.10.1016/j.talanta.2019.120151. PubMed DOI
Baron D.; Rozsypal J.; Michel A.; Secret E.; Siaugue J.-M.; Pluháček T.; Petr J. Study of interactions between carboxylated core shell magnetic nanoparticles and polymyxin B by capillary electrophoresis with inductively coupled plasma mass spectrometry. J. Chromatogr. A 2020, 1609, 460433.10.1016/j.chroma.2019.460433. PubMed DOI
Švecová P.; Baron D.; Schug K. A.; Pluháček T.; Petr J. Ultra-trace determination of oxaliplatin impurities by sweeping-MEKC-ICP-MS. Microchem. J. 2022, 172, 106967.10.1016/j.microc.2021.106967. DOI
Ostruszka R.; Půlpánová D.; Pluháček T.; Tomanec O.; Novák P.; Jirák D.; Šišková K. Facile One-Pot Green Synthesis of Magneto-Luminescent Bimetallic Nanocomposites with Potential as Dual Imaging Agent. Nanomaterials 2023, 13, 1027.10.3390/nano13061027. PubMed DOI PMC
Gaš B. PeakMaster and Simul – Software tools for mastering electrophoresis. TrAC, Trends Anal. Chem. 2023, 165, 117134.10.1016/j.trac.2023.117134. DOI
https://web.natur.cuni.cz/gas/peakmaster.html (accessed Sept 15, 2023).
Taylor G. Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube. Proc. R. Soc. London, Ser. A 1953, 219, 186–203. 10.1098/rspa.1953.0139. DOI
Aris R. On the Dispersion of a Solute in a Fluid Flowing through a Tube. Proc. R. Soc. London, Ser. A 1956, 235, 67–77. 10.1098/rspa.1956.0065. DOI
Sharma U.; Gleason N. J.; Carbeck J. D. Diffusivity of Solutes Measured in Glass Capillaries Using Taylor’s Analysis of Dispersion and a Commercial CE Instrument. Anal. Chem. 2005, 77, 806–813. 10.1021/ac048846z. PubMed DOI
Cottet H.; Biron J.-P.; Martin M. Taylor Dispersion Analysis of Mixtures. Anal. Chem. 2007, 79, 9066–9073. 10.1021/ac071018w. PubMed DOI
Oukacine F.; Geze A.; Choisnard L.; Putaux J. L.; Stahl J. P.; Peyrin E. Inline Coupling of Electrokinetic Preconcentration Method to Taylor Dispersion Analysis for Size-Based Characterization of Low-UV-Absorbing Nanoparticles. Anal. Chem. 2018, 90, 2493–2500. 10.1021/acs.analchem.7b03344. PubMed DOI
Höldrich M.; Liu S.; Epe M.; Lämmerhofer M. Taylor dispersion analysis, resonant mass measurement and bioactivity of pepsin-coated gold nanoparticles. Talanta 2017, 167, 67–74. 10.1016/j.talanta.2017.02.010. PubMed DOI
Striegel A. M. Hydrodynamic chromatography: packed columns, multiple detectors, and microcapillaries. Anal. Bioanal. Chem. 2012, 402, 77–81. 10.1007/s00216-011-5334-3. PubMed DOI
Balog S.; Urban D. A.; Milosevic A. M.; Crippa F.; Rothen-Rutishauser B.; Petri-Fink A. Taylor dispersion of nanoparticles. J. Nanopart. Res. 2017, 19, 287.10.1007/s11051-017-3987-3. DOI
Dronov M.; Schram J. A method for increasing the precision of isotope ratio analysis on a Quadrupole ICP-MS based on measurements of lead and strontium. J. Anal. At. Spectrom. 2013, 28, 1796–1803. 10.1039/c3ja50096a. DOI
Ponzevera E.; Quétel C. R.; Berglund M.; Taylor P. D. P.; Evans P.; Loss R. D.; Fortunato G. Mass discrimination during MC-ICPMS isotopic ratio measurements: Investigation by means of synthetic isotopic mixtures (IRMM-007 series) and application to the calibration of natural-like zinc materials (including IRMM-3702 and IRMM-651). J. Am. Soc. Mass Spectrom. 2006, 17, 1413–1427. 10.1016/j.jasms.2006.06.001. PubMed DOI
Chugaev A. V.; Chernyshev I. V. High-noble measurement of 107Ag/109Ag in native silver and gold by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem. Int. 2012, 50, 899–910. 10.1134/S0016702912110055. DOI
Laycock A.; Stolpe B.; Römer I.; Dybowska A.; Valsami-Jones E.; Lead J. R.; Rehkämper M. Synthesis and characterization of isotopically labeled silver nanoparticles for tracing studies. Environ. Sci.: Nano 2014, 1, 271–283. 10.1039/C3EN00100H. DOI