Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34378950
PubMed Central
PMC8552646
DOI
10.1128/spectrum.00452-21
Knihovny.cz E-resources
- Keywords
- Antarctica, Rugamonas, psychrophiles, species description, taxonomy, violacein,
- MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny * MeSH
- Indoles metabolism MeSH
- Lakes MeSH
- Pseudomonadaceae classification genetics isolation & purification metabolism MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Bacterial Typing Techniques MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Antarctic Regions MeSH
- Names of Substances
- DNA, Bacterial MeSH
- Indoles MeSH
- RNA, Ribosomal, 16S MeSH
- violacein MeSH Browser
A group of 11 bacterial strains was isolated from streams and lakes located in a deglaciated northern part of James Ross Island, Antarctica. They were rod-shaped, Gram-stain-negative, motile, and catalase-positive and produced blue-violet-pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, automated ribotyping, repetitive element sequence-based PCR (rep-PCR), MALDI-TOF MS, fatty acid profile, chemotaxonomy analyses, and extensive biotyping was applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all the isolates constituted a coherent group belonging to the genus Rugamonas. The closest relatives to the representative isolate P5900T were Rugamonas rubra CCM 3730T, Rugamonas rivuli FT103WT, and Rugamonas aquatica FT29WT, exhibiting 99.2%, 99.1%, and 98.6% 16S rRNA pairwise similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole-genome sequencing data clearly proved that P5900T represents a distinct Rugamonas species. The G+C content of genomic DNAs was 66.1 mol%. The major components in fatty acid profiles were summed feature 3 (C16:1ω7c/C16:1ω6c), C 16:0, and C12:0. The cellular quinone content contained exclusively ubiquinone Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The polyamine pattern was composed of putrescine, 2-hydroxputrescine, and spermidine. IMPORTANCE Our polyphasic approach provides a new understanding of the taxonomy of novel pigmented Rugamonas species isolated from freshwater samples in Antarctica. The isolates showed considerable extracellular bactericidal secretions. The antagonistic activity of studied isolates against selected pathogens was proved by this study and implied the importance of such compounds' production among aquatic bacteria. The psychrophilic and violacein-producing species Roseomonas violacea may play a role in the diverse consortium among pigmented bacteria in the Antarctic water environment. Based on all the obtained results, we propose a novel species for which the name Rugamonas violacea sp. nov. is suggested, with the type strain P5900T (CCM 8940T; LMG 32105T). Isolates of R. violacea were obtained from different aquatic localities, and they represent the autochthonous part of the water microbiome in Antarctica.
Central European Institute of Technology Masaryk Universitygrid 10267 32 Brno Czech Republic
Centrum Algatech MBÚ AV ČR Třeboň Czech Republic
Institut für Mikrobiologie Veterinärmedizinische Universität Wien Vienna Austria
See more in PubMed
Austin DA, Moss MO. 1986. Numerical taxonomy of red-pigmented bacteria isolated from a lowland river, with the description of a new taxon, Rugamonas rubra gen. nov., sp. nov. J Gen Microbiol 132:1899–1909.
Parte AC, Carbasse JS, Meier-Kolthoff JPN, Reimer LC, Göker M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. doi:10.1099/ijsem.0.004332. PubMed DOI PMC
Lu H, Deng T, Liu F, Wang Y, Xu M. 2020. Rugamonas aquatica sp. nov. and Rugamonas rivuli sp. nov., isolated from a subtropical stream in PR China. Int J Syst Evol Microbiol 70:3328–3334. doi:10.1099/ijsem.0.004172. PubMed DOI
Logan NA. 1989. Numerical taxonomy of violet-pigmented, gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov. Int J Syst Bacteriol 39:450–456. doi:10.1099/00207713-39-4-450. DOI
Srinivas TNR, Manasa P, Begum Z, Sunil B, Sailaja B, Singh SK, Prasad S, Shivaji S. 2013. Iodobacter arcticus sp. nov., a psychrotolerant bacterium isolated from meltwater stream sediment of an Arctic glacier. Int J Syst Evol Microbiol 63:2800–2805. doi:10.1099/ijs.0.044776-0. PubMed DOI
Wang H, Zhang X, Wang S, Zhao B, Lou K, Xing XH. 2018. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int J Syst Evol Microbiol 68:2271–2278. doi:10.1099/ijsem.0.002826. PubMed DOI
Yang E, Zhao M, Li S, Wang Y, Sun L, Liu J, Wang W. 2019. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int J Syst Evol Microbiol 69:2135–2141. doi:10.1099/ijsem.0.003449. PubMed DOI
Menezes CBA, Tonin MF, Correa DBA, Parma M, de Melo IS, Zucchi TD, Destéfano SAL, Fantinatti-Garboggini F. 2015. Chromobacterium amazonense sp. nov. isolated from water samples from the Rio Negro, Amazon, Brazil. Antonie Van Leeuwenhoek 107:1057–1063. doi:10.1007/s10482-015-0397-3. PubMed DOI
Kämpfer P, Busse H-J, Scholz HC. 2009. Chromobacterium piscinae sp. nov., and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol 59:2486–2490. doi:10.1099/ijs.0.008888-0. PubMed DOI
Martin PAW, Gundersen-Rindal D, Blackburn M, Buyer J. 2007. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 57:993–999. doi:10.1099/ijs.0.64611-0. PubMed DOI
Soby SD, Gadagkar SR, Contreras C, Caruso FL. 2013. Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait) bogs and irrigation ponds. Int J Syst Evol Microbiol 63:1840–1846. doi:10.1099/ijs.0.045161-0. PubMed DOI
Bergonzini C. 1881. Sopra un nuovo batterio colorato. Annuar Soc Nat Modena, Series 2 14:149–158.
Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N. 2012. Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov. Syst Appl Microbiol 35:19–23. doi:10.1016/j.syapm.2011.10.003. PubMed DOI
Rettori D, Durán N. 1998. Production, extraction and purification of violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J Microbiol Biotech 14:685–688. doi:10.1023/A:1008809504504. DOI
Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FTM. 2009. Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53:2149–2152. doi:10.1128/AAC.00693-08. PubMed DOI PMC
Choi SY, Yoon K, Lee JI, Mitchell RJ. 2015. Violacein: properties and production of a versatile bacterial pigment. Biomed Res Int 2015:465056. doi:10.1155/2015/465056. PubMed DOI PMC
Durán M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Durán N. 2012. Potential applications of violacein: a microbial pigment. Med Chem Res 21:1524–1532. doi:10.1007/s00044-011-9654-9. DOI
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. doi:10.1099/ijsem.0.002516. PubMed DOI
Sorek R, Lawrence CM, Wiedenheft B. 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266. doi:10.1146/annurev-biochem-072911-172315. PubMed DOI
Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, Daniel R, Schäfer W, Streit WR. 2016. Molecular keys to the Janthinobacterium and Duganella spp. interaction with the plant pathogen Fusarium graminearum. Front Microbiol 7:1668. doi:10.3389/fmicb.2016.01668. PubMed DOI PMC
Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. doi:10.1073/pnas.0906412106. PubMed DOI PMC
Meier-Kolthoff JP, Klenk H-P, Göker M. 2014. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. doi:10.1099/ijs.0.056994-0. PubMed DOI
Busse H-J, Auling G. 1988. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8. doi:10.1016/S0723-2020(88)80040-7. DOI
Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse H-J. 2015. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 65:56–64. doi:10.1099/ijs.0.068296-0. PubMed DOI
Kämpfer P, Irgana R, Busse H-J, Poblete-Morales M, Kleinhagauer T, Kämpfer P, Avendano-Herrera R. 2016. Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio). Int J Syst Evol Microbiol 66:572–576. doi:10.1099/ijsem.0.001408. PubMed DOI
Kämpfer P, Rosselló-Mora R, Hermansson M, Persson F, Huber B, Falsen E, Busse H-J. 2007. Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 57:1510–1515. doi:10.1099/ijs.0.64785-0. PubMed DOI
Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. doi:10.1093/nar/17.19.7843. PubMed DOI PMC
Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse H-J, Staňková E, Vrbovská V, Němec M, Barták M, Holochová P, Švec P, Pantůček R. 2017. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 67:1975–1983. doi:10.1099/ijsem.0.001898. PubMed DOI
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi:10.1099/ijsem.0.001755. PubMed DOI PMC
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi:10.1093/nar/gkm160. PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. doi:10.1093/molbev/msy096. PubMed DOI PMC
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581. PubMed DOI
Wu L, Ma J. 2019. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int J Syst Evol Microbiol 69:895–898. doi:10.1099/ijsem.0.003276. PubMed DOI
Shi W, Sun Q, Fan G, Hideaki S, Moriya O, Itoh T, Zhou Y, Cai M, Kim S-G, Lee J-S, Sedlacek I, Arahal DR, Lucena T, Kawasaki H, Evtushenko L, Weir B, Alexander S, Dénes D, Tanasupawat S, Eurwilaichitr L, Ingsriswang S, Gomez-Gil B, Hazbón M, Riojas MA, Suwannachart C, Yao S, Vandamme P, Peng F, Chen Z, Liu D, Sun X, Zhang X, Zhou Y, Meng Z, Wu L, Ma J. 2021. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 49:D694–D705. doi:10.1093/nar/gkaa957. PubMed DOI PMC
Yoon S-H, Ha S, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. doi:10.1007/s10482-017-0844-4. PubMed DOI
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. doi:10.1186/1471-2105-14-60. PubMed DOI PMC
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. doi:10.1093/nar/gkw569. PubMed DOI PMC
Taboada B, Estrada K, Ciria R, Merino E. 2018. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34:4118–4120. doi:10.1093/bioinformatics/bty496. PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. doi:10.1093/nar/gky1085. PubMed DOI PMC
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. doi:10.1093/nar/gkw387. PubMed DOI PMC
Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. 2016. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356. doi:10.1186/s12864-016-2627-0. PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein. Nucleic Acids Res 44:D457–D462. doi:10.1093/nar/gkv1070. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi:10.1016/j.jmb.2015.11.006. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2. PubMed DOI
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen A-LV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran H-K, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. doi:10.1093/nar/gkz935. PubMed DOI PMC
Freiwald A, Sauer S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4:732–742. doi:10.1038/nprot.2009.37. PubMed DOI
Švec P, Pantůček R, Petráš P, Sedláček I, Nováková D. 2010. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst Appl Microbiol 33:451–456. doi:10.1016/j.syapm.2010.09.004. PubMed DOI
Švec P, Králová S, Busse H-J, Kleinhagauer T, Kýrová K, Pantůček R, Mašlaňová I, Staňková E, Němec M, Holochová P, Barták M, Sedláček I. 2017. Pedobacter psychrophilus sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 67:2538–2543. doi:10.1099/ijsem.0.001962. PubMed DOI
Busse H-J, Bunka S, Hensel A, Lubitz W. 1997. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708. doi:10.1099/00207713-47-3-698. DOI
Tindall BJ. 1990. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. doi:10.1111/j.1574-6968.1990.tb03996.x. DOI
Tindall BJ. 1990. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. doi:10.1016/S0723-2020(11)80158-X. DOI
Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. 1996. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52. doi:10.1016/0168-1656(96)01376-4. DOI
Stolz A, Busse H-J, Kämpfer P. 2007. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576. doi:10.1099/ijs.0.64761-0. PubMed DOI
Carlone GM, Valadez MJ, Pickett MJ. 1982. Methods for distinguishing gram-positive from gram-negative bacteria. J Clin Microbiol 16:1157–1159. doi:10.1128/jcm.16.6.1157-1159.1982. PubMed DOI PMC
Da X, Jiang F, Chang X, Ren L, Qiu X, Kan W, Zhang Y, Deng S, Fang C, Peng F. 2015. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int J Syst Evol Microbiol 65:3841–3846. doi:10.1099/ijsem.0.000504. PubMed DOI
Atlas RM. 2010. Handbook of microbiological media, 4th ed, ASM Press, Washington, DC.
Barrow GI, Feltham RKA. 1993. Cowan and Steel’s Manual for the identification of medical Bacteria, 3rd ed, Cambridge University Press, Cambridge, UK.
Kosina M, Barták M, Mašlaňová I, Pascutti AV, Šedo O, Lexa M, Sedláček I. 2013. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol 67:637–646. doi:10.1007/s00284-013-0406-6. PubMed DOI
Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. 2003. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458. doi:10.1007/s00792-003-0347-2. PubMed DOI
CLSI Performance Standards for Antimicrobial Susceptibility Testing. 2015. Twenty-Fifth Informational Supplement (M100-S25), vol 35, no. 3. Clinical and Laboratory Standards Institute, Wayne, PA.
EUCAST. 2017. Breakpoint tables for interpretation of MICs and zone diameters, version 7.1. The European Committee on Antimicrobial Susceptibility Testing.
Hettiarachchi SA, Lee S-J, Lee Y, Kwon Y-K, De Zoysa M, Moon S, Jo E, Kim T, Kang D-H, Heo S-J, Oh C. 2017. A rapid and efficient screening method for antibacterial compound-producing bacteria. J Microbiol Biotechnol 27:1441–1448. doi:10.4014/jmb.1703.03012. PubMed DOI
Tejero-Sarinena S, Barlow J, Costabile A, Gibson GR, Rowland I. 2012. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe 18:530–538. doi:10.1016/j.anaerobe.2012.08.004. PubMed DOI