Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov

. 2021 Sep 03 ; 9 (1) : e0045221. [epub] 20210811

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34378950

A group of 11 bacterial strains was isolated from streams and lakes located in a deglaciated northern part of James Ross Island, Antarctica. They were rod-shaped, Gram-stain-negative, motile, and catalase-positive and produced blue-violet-pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, automated ribotyping, repetitive element sequence-based PCR (rep-PCR), MALDI-TOF MS, fatty acid profile, chemotaxonomy analyses, and extensive biotyping was applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all the isolates constituted a coherent group belonging to the genus Rugamonas. The closest relatives to the representative isolate P5900T were Rugamonas rubra CCM 3730T, Rugamonas rivuli FT103WT, and Rugamonas aquatica FT29WT, exhibiting 99.2%, 99.1%, and 98.6% 16S rRNA pairwise similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole-genome sequencing data clearly proved that P5900T represents a distinct Rugamonas species. The G+C content of genomic DNAs was 66.1 mol%. The major components in fatty acid profiles were summed feature 3 (C16:1ω7c/C16:1ω6c), C 16:0, and C12:0. The cellular quinone content contained exclusively ubiquinone Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The polyamine pattern was composed of putrescine, 2-hydroxputrescine, and spermidine. IMPORTANCE Our polyphasic approach provides a new understanding of the taxonomy of novel pigmented Rugamonas species isolated from freshwater samples in Antarctica. The isolates showed considerable extracellular bactericidal secretions. The antagonistic activity of studied isolates against selected pathogens was proved by this study and implied the importance of such compounds' production among aquatic bacteria. The psychrophilic and violacein-producing species Roseomonas violacea may play a role in the diverse consortium among pigmented bacteria in the Antarctic water environment. Based on all the obtained results, we propose a novel species for which the name Rugamonas violacea sp. nov. is suggested, with the type strain P5900T (CCM 8940T; LMG 32105T). Isolates of R. violacea were obtained from different aquatic localities, and they represent the autochthonous part of the water microbiome in Antarctica.

Zobrazit více v PubMed

Austin DA, Moss MO. 1986. Numerical taxonomy of red-pigmented bacteria isolated from a lowland river, with the description of a new taxon,

Parte AC, Carbasse JS, Meier-Kolthoff JPN, Reimer LC, Göker M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. doi: 10.1099/ijsem.0.004332. PubMed DOI PMC

Lu H, Deng T, Liu F, Wang Y, Xu M. 2020. PubMed DOI

Logan NA. 1989. Numerical taxonomy of violet-pigmented, gram-negative bacteria and description of DOI

Srinivas TNR, Manasa P, Begum Z, Sunil B, Sailaja B, Singh SK, Prasad S, Shivaji S. 2013. PubMed DOI

Wang H, Zhang X, Wang S, Zhao B, Lou K, Xing XH. 2018. PubMed DOI

Yang E, Zhao M, Li S, Wang Y, Sun L, Liu J, Wang W. 2019. PubMed DOI

Menezes CBA, Tonin MF, Correa DBA, Parma M, de Melo IS, Zucchi TD, Destéfano SAL, Fantinatti-Garboggini F. 2015. PubMed DOI

Kämpfer P, Busse H-J, Scholz HC. 2009. PubMed DOI

Martin PAW, Gundersen-Rindal D, Blackburn M, Buyer J. 2007. PubMed DOI

Soby SD, Gadagkar SR, Contreras C, Caruso FL. 2013. PubMed DOI

Bergonzini C. 1881. Sopra un nuovo batterio colorato. Annuar Soc Nat Modena, Series 2 14:149–158.

Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N. 2012. PubMed DOI

Rettori D, Durán N. 1998. Production, extraction and purification of violacein: an antibiotic pigment produced by DOI

Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FTM. 2009. Violacein extracted from PubMed DOI PMC

Choi SY, Yoon K, Lee JI, Mitchell RJ. 2015. Violacein: properties and production of a versatile bacterial pigment. Biomed Res Int 2015:465056. doi: 10.1155/2015/465056. PubMed DOI PMC

Durán M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Durán N. 2012. Potential applications of violacein: a microbial pigment. Med Chem Res 21:1524–1532. doi: 10.1007/s00044-011-9654-9. DOI

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI

Sorek R, Lawrence CM, Wiedenheft B. 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266. doi: 10.1146/annurev-biochem-072911-172315. PubMed DOI

Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, Daniel R, Schäfer W, Streit WR. 2016. Molecular keys to the PubMed DOI PMC

Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. doi: 10.1073/pnas.0906412106. PubMed DOI PMC

Meier-Kolthoff JP, Klenk H-P, Göker M. 2014. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. doi: 10.1099/ijs.0.056994-0. PubMed DOI

Busse H-J, Auling G. 1988. Polyamine pattern as a chemotaxonomic marker within the DOI

Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse H-J. 2015. PubMed DOI

Kämpfer P, Irgana R, Busse H-J, Poblete-Morales M, Kleinhagauer T, Kämpfer P, Avendano-Herrera R. 2016. PubMed DOI

Kämpfer P, Rosselló-Mora R, Hermansson M, Persson F, Huber B, Falsen E, Busse H-J. 2007. PubMed DOI

Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. doi: 10.1093/nar/17.19.7843. PubMed DOI PMC

Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse H-J, Staňková E, Vrbovská V, Němec M, Barták M, Holochová P, Švec P, Pantůček R. 2017. Red-pink pigmented PubMed DOI

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Wu L, Ma J. 2019. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int J Syst Evol Microbiol 69:895–898. doi: 10.1099/ijsem.0.003276. PubMed DOI

Shi W, Sun Q, Fan G, Hideaki S, Moriya O, Itoh T, Zhou Y, Cai M, Kim S-G, Lee J-S, Sedlacek I, Arahal DR, Lucena T, Kawasaki H, Evtushenko L, Weir B, Alexander S, Dénes D, Tanasupawat S, Eurwilaichitr L, Ingsriswang S, Gomez-Gil B, Hazbón M, Riojas MA, Suwannachart C, Yao S, Vandamme P, Peng F, Chen Z, Liu D, Sun X, Zhang X, Zhou Y, Meng Z, Wu L, Ma J. 2021. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 49:D694–D705. doi: 10.1093/nar/gkaa957. PubMed DOI PMC

Yoon S-H, Ha S, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. doi: 10.1007/s10482-017-0844-4. PubMed DOI

Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC

Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC

Taboada B, Estrada K, Ciria R, Merino E. 2018. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. 2016. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356. doi: 10.1186/s12864-016-2627-0. PubMed DOI PMC

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein. Nucleic Acids Res 44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen A-LV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran H-K, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC

Freiwald A, Sauer S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4:732–742. doi: 10.1038/nprot.2009.37. PubMed DOI

Švec P, Pantůček R, Petráš P, Sedláček I, Nováková D. 2010. Identification of PubMed DOI

Švec P, Králová S, Busse H-J, Kleinhagauer T, Kýrová K, Pantůček R, Mašlaňová I, Staňková E, Němec M, Holochová P, Barták M, Sedláček I. 2017. PubMed DOI

Busse H-J, Bunka S, Hensel A, Lubitz W. 1997. Discrimination of members of the family DOI

Tindall BJ. 1990. Lipid composition of DOI

Tindall BJ. 1990. A comparative study of the lipid composition of DOI

Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. 1996. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52. doi: 10.1016/0168-1656(96)01376-4. DOI

Stolz A, Busse H-J, Kämpfer P. 2007. PubMed DOI

Carlone GM, Valadez MJ, Pickett MJ. 1982. Methods for distinguishing gram-positive from gram-negative bacteria. J Clin Microbiol 16:1157–1159. doi: 10.1128/jcm.16.6.1157-1159.1982. PubMed DOI PMC

Da X, Jiang F, Chang X, Ren L, Qiu X, Kan W, Zhang Y, Deng S, Fang C, Peng F. 2015. PubMed DOI

Atlas RM. 2010. Handbook of microbiological media, 4th ed, ASM Press, Washington, DC.

Barrow GI, Feltham RKA. 1993. Cowan and Steel’s Manual for the identification of medical Bacteria, 3rd ed, Cambridge University Press, Cambridge, UK.

Kosina M, Barták M, Mašlaňová I, Pascutti AV, Šedo O, Lexa M, Sedláček I. 2013. PubMed DOI

Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. 2003. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458. doi: 10.1007/s00792-003-0347-2. PubMed DOI

CLSI Performance Standards for Antimicrobial Susceptibility Testing. 2015. Twenty-Fifth Informational Supplement (M100-S25), vol 35, no. 3. Clinical and Laboratory Standards Institute, Wayne, PA.

EUCAST. 2017. Breakpoint tables for interpretation of MICs and zone diameters, version 7.1. The European Committee on Antimicrobial Susceptibility Testing.

Hettiarachchi SA, Lee S-J, Lee Y, Kwon Y-K, De Zoysa M, Moon S, Jo E, Kim T, Kang D-H, Heo S-J, Oh C. 2017. A rapid and efficient screening method for antibacterial compound-producing bacteria. J Microbiol Biotechnol 27:1441–1448. doi: 10.4014/jmb.1703.03012. PubMed DOI

Tejero-Sarinena S, Barlow J, Costabile A, Gibson GR, Rowland I. 2012. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...