Characterisation of Waterborne Psychrophilic Massilia Isolates with Violacein Production and Description of Massilia antarctica sp. nov

. 2022 Mar 24 ; 10 (4) : . [epub] 20220324

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35456753

Grantová podpora
LM2015078 Ministry of Education, Youth and Sports of the Czech Republic
LM2018127 MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund-Project "UP CIISB"

Odkazy

PubMed 35456753
PubMed Central PMC9028926
DOI 10.3390/microorganisms10040704
PII: microorganisms10040704
Knihovny.cz E-zdroje

A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017-2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, gyrB and lepA genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping. Phylogenetic analysis of the 16S rRNA gene sequences revealed that the entire group are representatives of the genus Massilia. The closest relatives of the reference strain P8398T were Massilia atriviolacea, Massilia violaceinigra, Massilia rubra, Massilia mucilaginosa, Massilia aquatica, Massilia frigida, Massilia glaciei and Massilia eurypsychrophila with a pairwise similarity of 98.6-100% in the 16S rRNA. The subsequent gyrB and lepA sequencing results showed the novelty of the analysed group, and the average nucleotide identity and digital DNA-DNA hybridisation values clearly proved that P8398T represents a distinct Massilia species. After all these results, we nominate a new species with the proposed name Massilia antarctica sp. nov. The type strain is P8398T (= CCM 8941T = LMG 32108T).

Zobrazit více v PubMed

Barnes D.K.A. Polar marine ecosystems. In: Bell E.M., editor. Life at Extremes: Environments, Organisms, and Strategies for Survival. Cabi; London, UK: 2012. pp. 1–9.

Peeters K., Verleyen E., Hodgson D.A., Convey P., Ertz D., Vyverman W., Willems A. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol. 2012;35:543–554. doi: 10.1007/s00300-011-1100-4. DOI

Sanyal A., Antony R., Samui G., Thamban M. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol. Res. 2018;208:32–42. doi: 10.1016/j.micres.2018.01.004. PubMed DOI

La Scola B., Birtles R.J., Mallet M.-N., Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J. Clin. Microbiol. 1998;36:2847–2852. doi: 10.1128/jcm.36.10.2847-2852.1998. PubMed DOI PMC

Garrity G.M., Bell J.A., Lilburn T. Family II. Oxalobacteraceae fam. nov. In: Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M., editors. Bergey’s Manual of Systematic Bacteriology, the Proteobacteria, Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 2nd ed. Volume 2. Springer; New York, NY, USA: 2005. p. 623.

Kämpfer P., Lodders N., Martin K., Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int. J. Syst. Evol. Microbiol. 2011;61:1528–1533. doi: 10.1099/ijs.0.025585-0. PubMed DOI

Singh H., Du J., Won K., Yang J.-E., Yin C., Kook M., Yi T.-H. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int. J. Syst. Evol. Microbiol. 2015;65:3690–3696. doi: 10.1099/ijsem.0.000477. PubMed DOI

Parte A.C., Carbasse J.S., Meier-Kolthoff J.P., Reimer L.C., Göker M. List of Prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020;70:5607–5612. doi: 10.1099/ijsem.0.004332. PubMed DOI PMC

Zhang B., Yang R., Zhang G., Zhang D., Zhang W., Chen T., Liu G. Massilia arenae sp. nov., isolated from sand soil in the Qinghai-Tibetan Plateau. Int. J. Syst. Evol. Microbiol. 2020;70:2435–2439. doi: 10.1099/ijsem.0.004056. PubMed DOI

Yang E., Zhao M., Li S., Wang Y., Sun L., Liu J., Wang W. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 2019;69:2135–2141. doi: 10.1099/ijsem.0.003449. PubMed DOI

Ren M., Li X., Zhang Y., Jin Y., Li S., Huang H. Massilia armeniaca sp. nov., isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2018;68:2319–2324. doi: 10.1099/ijsem.0.002836. PubMed DOI

Sun L.-N., Yang E.-D., Cui D.-X., Ni Y.-W., Wang Y.-B., Sun D.-D., Wang W.-Y. Massilia buxea sp. nov., isolated from a rock surface. Int. J. Syst. Evol. Microbiol. 2017;67:4390–4396. doi: 10.1099/ijsem.0.002301. PubMed DOI

Feng G.-D., Yang S.-Z., Li H.-P., Zhu H. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int. J. Syst. Evol. Microbiol. 2016;66:50–55. doi: 10.1099/ijsem.0.000670. PubMed DOI

Shen L., Liu Y., Gu Z., Xu B., Wang N., Jiao N., Liu H., Zhou Y. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int. J. Syst. Evol. Microbiol. 2015;65:2124–2129. doi: 10.1099/ijs.0.000229. PubMed DOI

Guo B., Liu Y., Gu Z., Shen L., Liu K., Wang N., Xing T., Liu H., Zhou Y., Li J. Massilia psychrophila sp. nov., isolated from an ice core. Int. J. Syst. Evol. Microbiol. 2016;66:4088–4093. doi: 10.1099/ijsem.0.001315. PubMed DOI

Gu Z., Liu Y., Xu B., Wang N., Jiao N., Shen L., Liu H., Zhou Y., Liu X., Li J., et al. Massilia glaciei sp. nov., isolated from the Muztagh Glacier. Int. J. Syst. Evol. Microbiol. 2017;67:4075–4079. doi: 10.1099/ijsem.0.002252. PubMed DOI

Gallego V., Sanchez-Porro C., Garcia M.T., Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 2006;56:2449–2453. doi: 10.1099/ijs.0.64389-0. PubMed DOI

Lu H., Deng T., Liu F., Wang Y., Yang X., Xu M. Duganella lactea sp. nov., Duganella guangzhouensis sp. nov., Duganella flavida sp. nov. and Massilia rivuli sp. nov., isolated from a subtropical stream in PR China and proposal to reclassify Duganella ginsengisoli as Massilia ginsengisoli comb. nov. Int. J. Syst. Evol. Microbiol. 2020;70:4822–4830. doi: 10.1099/ijsem.0.004355. PubMed DOI

Orthová I., Kampfer P., Glaeser S.P., Kaden R., Busse H.-J. Massilia norwichensis sp. nov., isolated from an air sample. Int. J. Syst. Evol. Microbiol. 2015;65:56–64. doi: 10.1099/ijs.0.068296-0. PubMed DOI

Kämpfer P., Lodders N., Martin K., Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int. J. Syst. Evol. Microbiol. 2012;62:364–369. doi: 10.1099/ijs.0.032441-0. PubMed DOI

Wery N., Gerike U., Sharman A., Chaudhuri J.B., Hough D.W., Danson M.J. Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from Antarctic soil. Appl. Environ. Microbiol. 2003;69:1457–1464. doi: 10.1128/AEM.69.3.1457-1464.2003. PubMed DOI PMC

Cong B., Yin X., Deng A., Shen J., Tian Y., Wang S., Yang H. Diversity of cultivable microbes from soil of the Fildes Peninsula, Antarctica, and their potential application. Front. Microbiol. 2020;11:570836. doi: 10.3389/fmicb.2020.570836. PubMed DOI PMC

Holochová P., Mašlaňová I., Sedláček I., Švec P., Králová S., Kovařovic V., Busse H.-J., Staňková E., Barták M., Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst. Appl. Microbiol. 2020;43:126112. doi: 10.1016/j.syapm.2020.126112. PubMed DOI

Sajjad W., Din G., Rafiq M., Iqbal A., Khan S., Zada S., Ali B., Kang S. Pigment production by cold-adapted bacteria and fungi: Colorful tale of cryosphere with wide range applications. Extremophiles. 2020;24:447–473. doi: 10.1007/s00792-020-01180-2. PubMed DOI PMC

Dieser M., Greenwood M., Foreman C. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res. 2010;42:396–405. doi: 10.1657/1938-4246-42.4.396. DOI

Zhang Y.-Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int. J. Syst. Evol. Microbiol. 2006;56:459–463. doi: 10.1099/ijs.0.64083-0. PubMed DOI

Wang J., Zhang J., Pang H., Zhang Y., Li Y., Fan J. Massilia flava sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2012;62:580–585. doi: 10.1099/ijs.0.031344-0. PubMed DOI

Wang H., Zhang X., Wang S., Zhao B., Lou K., Xing X.-H. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int. J. Syst. Evol. Microbiol. 2018;68:2271–2278. doi: 10.1099/ijsem.0.002826. PubMed DOI

Myeong N.R., Seong H.J., Kim H.-J., Sul W.J. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1. J. Biotech. 2016;223:36–37. doi: 10.1016/j.jbiotec.2016.02.027. PubMed DOI

Sedláček I., Holochová P., Sobotka R., Busse H.-J., Švec P., Králová S., Šedo O., Pilný J., Staňková E., Koublová V., et al. Classification of violacein-producing psychrophilic group of isolates associated with freshwater in Antarctica and description of Rugamonas violacea sp. nov. Microbiol. Spectr. 2021;9:e00452-21. doi: 10.1128/Spectrum.00452-21. PubMed DOI PMC

Kýrová K., Sedláček I., Pantůček R., Králová S., Holochová P., Mašlaňová I., Staňková E., Kleinhagauer T., Gelbíčová T., Sobotka R., et al. Rufibacter ruber sp. nov., isolated from fragmentary rock. Int. J. Syst. Evol. Microbiol. 2016;66:4401–4405. doi: 10.1099/ijsem.0.001364. PubMed DOI

Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., Da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018;68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI

Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Lee I., Chalita M., Ha S.-M., Na S.-I., Yoon S.-H., Chun J. ContEst16S: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 2017;67:2053–2057. doi: 10.1099/ijsem.0.001872. PubMed DOI

Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/bf01731581. PubMed DOI

Wu L., Ma J. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: Providing services to taxonomists for standard genome sequencing and annotation. Int. J. Syst. Evol. Microbiol. 2019;69:895–898. doi: 10.1099/ijsem.0.003276. PubMed DOI

Shi W., Sun Q., Fan G., Hideaki S., Moriya O., Itoh T., Zhou Y., Cai M., Kim S.-G., Lee J.-S., et al. gcType: A high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res. 2021;49:D694–D705. doi: 10.1093/nar/gkaa957. PubMed DOI PMC

Yoon S.-H., Ha S.-M., Lim J., Kwon S., Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek. 2017;110:1281–1286. doi: 10.1007/s10482-017-0844-4. PubMed DOI

Meier-Kolthoff J.P., Auch A.F., Klenk H.-P., Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC

Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC

Taboada B., Estrada K., Ciria R., Merino E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics. 2018;34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC

Cantalapiedra C.P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021;38:5825–5829. doi: 10.1093/molbev/msab293. PubMed DOI PMC

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Biswas A., Staals R., Morales S., Fineran P., Brown C.M. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:356. doi: 10.1186/s12864-016-2627-0. PubMed DOI PMC

Roberts R.J., Vincze T., Posfai J., Macelis D. REBASE—A database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–D299. doi: 10.1093/nar/gku1046. PubMed DOI PMC

Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC

Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.-L.V., Cheng A.A., Liu S., et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC

Freiwald A., Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009;4:732–742. doi: 10.1038/nprot.2009.37. PubMed DOI

Busse H.-J., Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 1988;11:1–8. doi: 10.1016/S0723-2020(88)80040-7. DOI

Busse H.-J., Bunka S., Hensel A., Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int. J. Syst. Evol. Microbiol. 1997;47:698–708. doi: 10.1099/00207713-47-3-698. DOI

Tindall B.J. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 1990;66:199–202. doi: 10.1111/j.1574-6968.1990.tb03996.x. DOI

Tindall B. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 1990;13:128–130. doi: 10.1016/S0723-2020(11)80158-X. DOI

Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. Classification of bacteria isolated from a medieval wall painting. J. Biotechnol. 1996;47:39–52. doi: 10.1016/0168-1656(96)01376-4. DOI

Stolz A., Busse H.-J., Kampfer P. Pseudomonas knackmussii sp. nov. Int. J. Syst. Evol. Microbiol. 2007;57:572–576. doi: 10.1099/ijs.0.64761-0. PubMed DOI

Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Microbial ID, Inc.; Newark, DE, USA: 1990. MIDI Technical Note 101.

Švec P., Pantůček R., Petráš P., Sedláček I., Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI

Carlone G.M., Valadez M.J., Pickett M.J. Methods for distinguishing gram-positive from gram-negative bacteria. J. Clin. Microbiol. 1982;16:1157–1159. doi: 10.1128/jcm.16.6.1157-1159.1982. PubMed DOI PMC

Sedláček I., Králová S., Kýrová K., Mašlaňová I., Busse H.-J., Staňková E., Vrbovská V., Němec M., Barták M., Holochová P., et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int. J. Syst. Evol. Microbiol. 2017;67:1975–1983. doi: 10.1099/ijsem.0.001898. PubMed DOI

Da X., Jiang F., Chang X., Ren L., Qiu X., Kan W., Zhang Y., Deng S., Fang C., Peng F. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int. J. Syst. Evol. Microbiol. 2015;65:3841–3846. doi: 10.1099/ijsem.0.000504. PubMed DOI

Atlas R.M. Handbook of Microbiological Media. 4th ed. ASM Press; Washington, DC, USA: 2010.

Barrow G.I., Feltham R.K.A. Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd ed. Cambridge University Press; Cambridge, UK: 1993.

Kosina M., Barták M., Mašlaňová I., Pascutti A.V., Šedo O., Lexa M., Sedláček I. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr. Microbiol. 2013;67:637–646. doi: 10.1007/s00284-013-0406-6. PubMed DOI

Margesin R., Gander S., Zacke G., Gounot A.M., Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 2003;7:451–458. doi: 10.1007/s00792-003-0347-2. PubMed DOI

CLSI . Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Informational Supplement (M100-S25) Volume 35. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2015. No. 3.

EUCAST . Breakpoint Tables for Interpretation of Mics and Zone Diameters, Version 12.0. The European Committee on Antimicrobial Susceptibility Testing; Växjö, Sweden: 2022.

Sorek R., Lawrence C.M., Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 2013;82:237–266. doi: 10.1146/annurev-biochem-072911-172315. PubMed DOI

Vasu K., Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 2013;77:53–72. doi: 10.1128/mmbr.00044-12. PubMed DOI PMC

Białkowska A., Majewska E., Olczak A., Twarda-Clapa A. Ice binding proteins: Diverse biological roles and applications in different types of industry. Biomolecules. 2020;10:274. doi: 10.3390/biom10020274. PubMed DOI PMC

Casanueva A., Tuffin M., Cary C., Cowan D.A. Molecular adaptations to psychrophily: The impact of ´omic´ technologies. Trends Microbiol. 2010;18:374–381. doi: 10.1016/j.tim.2010.05.002. PubMed DOI

Los D.A., Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta Biomembr. 2004;1666:142–157. doi: 10.1016/j.bbamem.2004.08.002. PubMed DOI

Obruča S., Dvořák P., Sedláček P., Koller M., Sedlář K., Pernicová I., Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: Towards sustainable production of microbial bioplastics. Biotechnol. Adv. 2022:107906. doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...