Characterisation of Waterborne Psychrophilic Massilia Isolates with Violacein Production and Description of Massilia antarctica sp. nov
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2015078
Ministry of Education, Youth and Sports of the Czech Republic
LM2018127
MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund-Project "UP CIISB"
PubMed
35456753
PubMed Central
PMC9028926
DOI
10.3390/microorganisms10040704
PII: microorganisms10040704
Knihovny.cz E-zdroje
- Klíčová slova
- Antarctica, Massilia, description, psychrophilic, violacein, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH
A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017-2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, gyrB and lepA genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping. Phylogenetic analysis of the 16S rRNA gene sequences revealed that the entire group are representatives of the genus Massilia. The closest relatives of the reference strain P8398T were Massilia atriviolacea, Massilia violaceinigra, Massilia rubra, Massilia mucilaginosa, Massilia aquatica, Massilia frigida, Massilia glaciei and Massilia eurypsychrophila with a pairwise similarity of 98.6-100% in the 16S rRNA. The subsequent gyrB and lepA sequencing results showed the novelty of the analysed group, and the average nucleotide identity and digital DNA-DNA hybridisation values clearly proved that P8398T represents a distinct Massilia species. After all these results, we nominate a new species with the proposed name Massilia antarctica sp. nov. The type strain is P8398T (= CCM 8941T = LMG 32108T).
Zobrazit více v PubMed
Barnes D.K.A. Polar marine ecosystems. In: Bell E.M., editor. Life at Extremes: Environments, Organisms, and Strategies for Survival. Cabi; London, UK: 2012. pp. 1–9.
Peeters K., Verleyen E., Hodgson D.A., Convey P., Ertz D., Vyverman W., Willems A. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol. 2012;35:543–554. doi: 10.1007/s00300-011-1100-4. DOI
Sanyal A., Antony R., Samui G., Thamban M. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol. Res. 2018;208:32–42. doi: 10.1016/j.micres.2018.01.004. PubMed DOI
La Scola B., Birtles R.J., Mallet M.-N., Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J. Clin. Microbiol. 1998;36:2847–2852. doi: 10.1128/jcm.36.10.2847-2852.1998. PubMed DOI PMC
Garrity G.M., Bell J.A., Lilburn T. Family II. Oxalobacteraceae fam. nov. In: Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M., editors. Bergey’s Manual of Systematic Bacteriology, the Proteobacteria, Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) 2nd ed. Volume 2. Springer; New York, NY, USA: 2005. p. 623.
Kämpfer P., Lodders N., Martin K., Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int. J. Syst. Evol. Microbiol. 2011;61:1528–1533. doi: 10.1099/ijs.0.025585-0. PubMed DOI
Singh H., Du J., Won K., Yang J.-E., Yin C., Kook M., Yi T.-H. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int. J. Syst. Evol. Microbiol. 2015;65:3690–3696. doi: 10.1099/ijsem.0.000477. PubMed DOI
Parte A.C., Carbasse J.S., Meier-Kolthoff J.P., Reimer L.C., Göker M. List of Prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020;70:5607–5612. doi: 10.1099/ijsem.0.004332. PubMed DOI PMC
Zhang B., Yang R., Zhang G., Zhang D., Zhang W., Chen T., Liu G. Massilia arenae sp. nov., isolated from sand soil in the Qinghai-Tibetan Plateau. Int. J. Syst. Evol. Microbiol. 2020;70:2435–2439. doi: 10.1099/ijsem.0.004056. PubMed DOI
Yang E., Zhao M., Li S., Wang Y., Sun L., Liu J., Wang W. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 2019;69:2135–2141. doi: 10.1099/ijsem.0.003449. PubMed DOI
Ren M., Li X., Zhang Y., Jin Y., Li S., Huang H. Massilia armeniaca sp. nov., isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2018;68:2319–2324. doi: 10.1099/ijsem.0.002836. PubMed DOI
Sun L.-N., Yang E.-D., Cui D.-X., Ni Y.-W., Wang Y.-B., Sun D.-D., Wang W.-Y. Massilia buxea sp. nov., isolated from a rock surface. Int. J. Syst. Evol. Microbiol. 2017;67:4390–4396. doi: 10.1099/ijsem.0.002301. PubMed DOI
Feng G.-D., Yang S.-Z., Li H.-P., Zhu H. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int. J. Syst. Evol. Microbiol. 2016;66:50–55. doi: 10.1099/ijsem.0.000670. PubMed DOI
Shen L., Liu Y., Gu Z., Xu B., Wang N., Jiao N., Liu H., Zhou Y. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int. J. Syst. Evol. Microbiol. 2015;65:2124–2129. doi: 10.1099/ijs.0.000229. PubMed DOI
Guo B., Liu Y., Gu Z., Shen L., Liu K., Wang N., Xing T., Liu H., Zhou Y., Li J. Massilia psychrophila sp. nov., isolated from an ice core. Int. J. Syst. Evol. Microbiol. 2016;66:4088–4093. doi: 10.1099/ijsem.0.001315. PubMed DOI
Gu Z., Liu Y., Xu B., Wang N., Jiao N., Shen L., Liu H., Zhou Y., Liu X., Li J., et al. Massilia glaciei sp. nov., isolated from the Muztagh Glacier. Int. J. Syst. Evol. Microbiol. 2017;67:4075–4079. doi: 10.1099/ijsem.0.002252. PubMed DOI
Gallego V., Sanchez-Porro C., Garcia M.T., Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 2006;56:2449–2453. doi: 10.1099/ijs.0.64389-0. PubMed DOI
Lu H., Deng T., Liu F., Wang Y., Yang X., Xu M. Duganella lactea sp. nov., Duganella guangzhouensis sp. nov., Duganella flavida sp. nov. and Massilia rivuli sp. nov., isolated from a subtropical stream in PR China and proposal to reclassify Duganella ginsengisoli as Massilia ginsengisoli comb. nov. Int. J. Syst. Evol. Microbiol. 2020;70:4822–4830. doi: 10.1099/ijsem.0.004355. PubMed DOI
Orthová I., Kampfer P., Glaeser S.P., Kaden R., Busse H.-J. Massilia norwichensis sp. nov., isolated from an air sample. Int. J. Syst. Evol. Microbiol. 2015;65:56–64. doi: 10.1099/ijs.0.068296-0. PubMed DOI
Kämpfer P., Lodders N., Martin K., Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int. J. Syst. Evol. Microbiol. 2012;62:364–369. doi: 10.1099/ijs.0.032441-0. PubMed DOI
Wery N., Gerike U., Sharman A., Chaudhuri J.B., Hough D.W., Danson M.J. Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from Antarctic soil. Appl. Environ. Microbiol. 2003;69:1457–1464. doi: 10.1128/AEM.69.3.1457-1464.2003. PubMed DOI PMC
Cong B., Yin X., Deng A., Shen J., Tian Y., Wang S., Yang H. Diversity of cultivable microbes from soil of the Fildes Peninsula, Antarctica, and their potential application. Front. Microbiol. 2020;11:570836. doi: 10.3389/fmicb.2020.570836. PubMed DOI PMC
Holochová P., Mašlaňová I., Sedláček I., Švec P., Králová S., Kovařovic V., Busse H.-J., Staňková E., Barták M., Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst. Appl. Microbiol. 2020;43:126112. doi: 10.1016/j.syapm.2020.126112. PubMed DOI
Sajjad W., Din G., Rafiq M., Iqbal A., Khan S., Zada S., Ali B., Kang S. Pigment production by cold-adapted bacteria and fungi: Colorful tale of cryosphere with wide range applications. Extremophiles. 2020;24:447–473. doi: 10.1007/s00792-020-01180-2. PubMed DOI PMC
Dieser M., Greenwood M., Foreman C. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res. 2010;42:396–405. doi: 10.1657/1938-4246-42.4.396. DOI
Zhang Y.-Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int. J. Syst. Evol. Microbiol. 2006;56:459–463. doi: 10.1099/ijs.0.64083-0. PubMed DOI
Wang J., Zhang J., Pang H., Zhang Y., Li Y., Fan J. Massilia flava sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2012;62:580–585. doi: 10.1099/ijs.0.031344-0. PubMed DOI
Wang H., Zhang X., Wang S., Zhao B., Lou K., Xing X.-H. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int. J. Syst. Evol. Microbiol. 2018;68:2271–2278. doi: 10.1099/ijsem.0.002826. PubMed DOI
Myeong N.R., Seong H.J., Kim H.-J., Sul W.J. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1. J. Biotech. 2016;223:36–37. doi: 10.1016/j.jbiotec.2016.02.027. PubMed DOI
Sedláček I., Holochová P., Sobotka R., Busse H.-J., Švec P., Králová S., Šedo O., Pilný J., Staňková E., Koublová V., et al. Classification of violacein-producing psychrophilic group of isolates associated with freshwater in Antarctica and description of Rugamonas violacea sp. nov. Microbiol. Spectr. 2021;9:e00452-21. doi: 10.1128/Spectrum.00452-21. PubMed DOI PMC
Kýrová K., Sedláček I., Pantůček R., Králová S., Holochová P., Mašlaňová I., Staňková E., Kleinhagauer T., Gelbíčová T., Sobotka R., et al. Rufibacter ruber sp. nov., isolated from fragmentary rock. Int. J. Syst. Evol. Microbiol. 2016;66:4401–4405. doi: 10.1099/ijsem.0.001364. PubMed DOI
Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., Da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018;68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI
Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC
Lee I., Chalita M., Ha S.-M., Na S.-I., Yoon S.-H., Chun J. ContEst16S: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 2017;67:2053–2057. doi: 10.1099/ijsem.0.001872. PubMed DOI
Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/bf01731581. PubMed DOI
Wu L., Ma J. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: Providing services to taxonomists for standard genome sequencing and annotation. Int. J. Syst. Evol. Microbiol. 2019;69:895–898. doi: 10.1099/ijsem.0.003276. PubMed DOI
Shi W., Sun Q., Fan G., Hideaki S., Moriya O., Itoh T., Zhou Y., Cai M., Kim S.-G., Lee J.-S., et al. gcType: A high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res. 2021;49:D694–D705. doi: 10.1093/nar/gkaa957. PubMed DOI PMC
Yoon S.-H., Ha S.-M., Lim J., Kwon S., Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek. 2017;110:1281–1286. doi: 10.1007/s10482-017-0844-4. PubMed DOI
Meier-Kolthoff J.P., Auch A.F., Klenk H.-P., Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC
Taboada B., Estrada K., Ciria R., Merino E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics. 2018;34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC
Cantalapiedra C.P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021;38:5825–5829. doi: 10.1093/molbev/msab293. PubMed DOI PMC
Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC
Biswas A., Staals R., Morales S., Fineran P., Brown C.M. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:356. doi: 10.1186/s12864-016-2627-0. PubMed DOI PMC
Roberts R.J., Vincze T., Posfai J., Macelis D. REBASE—A database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–D299. doi: 10.1093/nar/gku1046. PubMed DOI PMC
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.-L.V., Cheng A.A., Liu S., et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC
Freiwald A., Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009;4:732–742. doi: 10.1038/nprot.2009.37. PubMed DOI
Busse H.-J., Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 1988;11:1–8. doi: 10.1016/S0723-2020(88)80040-7. DOI
Busse H.-J., Bunka S., Hensel A., Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int. J. Syst. Evol. Microbiol. 1997;47:698–708. doi: 10.1099/00207713-47-3-698. DOI
Tindall B.J. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 1990;66:199–202. doi: 10.1111/j.1574-6968.1990.tb03996.x. DOI
Tindall B. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 1990;13:128–130. doi: 10.1016/S0723-2020(11)80158-X. DOI
Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. Classification of bacteria isolated from a medieval wall painting. J. Biotechnol. 1996;47:39–52. doi: 10.1016/0168-1656(96)01376-4. DOI
Stolz A., Busse H.-J., Kampfer P. Pseudomonas knackmussii sp. nov. Int. J. Syst. Evol. Microbiol. 2007;57:572–576. doi: 10.1099/ijs.0.64761-0. PubMed DOI
Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Microbial ID, Inc.; Newark, DE, USA: 1990. MIDI Technical Note 101.
Švec P., Pantůček R., Petráš P., Sedláček I., Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI
Carlone G.M., Valadez M.J., Pickett M.J. Methods for distinguishing gram-positive from gram-negative bacteria. J. Clin. Microbiol. 1982;16:1157–1159. doi: 10.1128/jcm.16.6.1157-1159.1982. PubMed DOI PMC
Sedláček I., Králová S., Kýrová K., Mašlaňová I., Busse H.-J., Staňková E., Vrbovská V., Němec M., Barták M., Holochová P., et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int. J. Syst. Evol. Microbiol. 2017;67:1975–1983. doi: 10.1099/ijsem.0.001898. PubMed DOI
Da X., Jiang F., Chang X., Ren L., Qiu X., Kan W., Zhang Y., Deng S., Fang C., Peng F. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int. J. Syst. Evol. Microbiol. 2015;65:3841–3846. doi: 10.1099/ijsem.0.000504. PubMed DOI
Atlas R.M. Handbook of Microbiological Media. 4th ed. ASM Press; Washington, DC, USA: 2010.
Barrow G.I., Feltham R.K.A. Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd ed. Cambridge University Press; Cambridge, UK: 1993.
Kosina M., Barták M., Mašlaňová I., Pascutti A.V., Šedo O., Lexa M., Sedláček I. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr. Microbiol. 2013;67:637–646. doi: 10.1007/s00284-013-0406-6. PubMed DOI
Margesin R., Gander S., Zacke G., Gounot A.M., Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 2003;7:451–458. doi: 10.1007/s00792-003-0347-2. PubMed DOI
CLSI . Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Informational Supplement (M100-S25) Volume 35. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2015. No. 3.
EUCAST . Breakpoint Tables for Interpretation of Mics and Zone Diameters, Version 12.0. The European Committee on Antimicrobial Susceptibility Testing; Växjö, Sweden: 2022.
Sorek R., Lawrence C.M., Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 2013;82:237–266. doi: 10.1146/annurev-biochem-072911-172315. PubMed DOI
Vasu K., Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 2013;77:53–72. doi: 10.1128/mmbr.00044-12. PubMed DOI PMC
Białkowska A., Majewska E., Olczak A., Twarda-Clapa A. Ice binding proteins: Diverse biological roles and applications in different types of industry. Biomolecules. 2020;10:274. doi: 10.3390/biom10020274. PubMed DOI PMC
Casanueva A., Tuffin M., Cary C., Cowan D.A. Molecular adaptations to psychrophily: The impact of ´omic´ technologies. Trends Microbiol. 2010;18:374–381. doi: 10.1016/j.tim.2010.05.002. PubMed DOI
Los D.A., Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta Biomembr. 2004;1666:142–157. doi: 10.1016/j.bbamem.2004.08.002. PubMed DOI
Obruča S., Dvořák P., Sedláček P., Koller M., Sedlář K., Pernicová I., Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: Towards sustainable production of microbial bioplastics. Biotechnol. Adv. 2022:107906. doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI