Poor Skeletal Robustness on Lower Extremities and Weak Lean Mass Development on Upper Arm and Calf: Normal Weight Obesity in Middle-School-Aged Children (9 to 12)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30574472
PubMed Central
PMC6291469
DOI
10.3389/fped.2018.00371
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue, body mass index, children, lean mass, normal weight obesity, skeletal robustness,
- Publikační typ
- časopisecké články MeSH
Background: Normal weight obesity in children has been associated with excessive body fat, lower bone density and decreased total lean mass. However, no studies have been done into whether normal weight obese children differ in skeletal robustness or lean mass development on the extremities from normal weight non-obese, overweight, and obese peers although these are important indicators of healthy development of children. Methods: Body height, body weight, BMI, four skinfolds, and two limb circumferences were assessed. We calculated total body fat using Slaughter's equations, the Frame index for skeletal robustness and muscle area for the upper arm and calf using Rolland-Cachera equations. Using national references of BMI and measured skinfolds, three subgroups of participants (9-12 years) consisting of 210 middle-school-aged children (M-age = 11.01 ± 1.05)-110 girls and 100 boys-were selected: (A) overweight obese (OWOB) (n = 72); (B) normal weight obese (NWO) (n = 69); and, (C) normal weight non-obese (NWNO) (n = 69). All values, were converted to Z-scores to take account of participant's sex and age. Results: NWO children had significantly poorer skeletal robustness on lower extremities and poorer muscle area on the upper arm and calf compared to NWNO counterparts with significantly higher evidence in boys-skeletal robustness NWO boys: Z-score = -0.85; NWO girls: Z-score = -0.43; lean mass on the calf: NWO boys Z-score = -1.34; NWO girls: Z-score = -0.85. The highest skeletal robustness-but not muscle area on the calf-was detected in OWOB children. Conclusions: Further research should focus on whether this poor skeletal and lean mass development: (1) is a consequence of insufficient physical activity regimes; (2) affects physical fitness of NWO children and could contribute to a higher prevalence of health problems in them. We have highlighted the importance of the development of a simple identification of NWO children to be used by pediatricians.
Faculty of Physical Education and Sport Charles University Prague Czechia
Obesity Management Centre Institute of Endocrinology Prague Czechia
Zobrazit více v PubMed
De LA, Martinoli R, Vaia F, Di RL. Normal Weight Obese (NWO) Women: an evaluation of a candidate new syndrome. Nutr Metabol Cardiovasc Dis. (2006) 16:513–23. 10.1016/j.numecd.2005.10.010 PubMed DOI
De Lorenzo A, Del Gobbo V, Premrov MG, Bigioni M, Galvano F, Di Renzo L. Normal-weight obese syndrome: early inflammation? Am J Clin Nutr. (2007) 85:40–5. 10.1093/ajcn/85.1.40 PubMed DOI
Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Jimenez F. The concept of normal weight obesity. Prog Cardiovasc Dis. (2014) 56:426–33. 10.1016/j.pcad.2013.10.003 PubMed DOI
Di Renzo L, Sarlo F, Petramala L, Iacopino L, Monteleone G, Colica C, et al. . Association between– 308 G/A TNF-α polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in normal weight obese syndrome. Dis. Markers (2013) 35:615–23. 10.1155/2013/983424 PubMed DOI PMC
Ruderman NB, Schneider SH, Berchtold P. The “metabolically-obese,” normal-weight individual. Am J Clin Nutr. (1981) 348:1617–21. 10.1093/ajcn/34.8.1617 PubMed DOI
Marques-Vidal P, Pécoud A, Hayoz D, Paccaud F, Mooser V, Waeber G, et al. . Prevalence of normal weight obesity in switzerland: effect of various definitions. Eur J Nutr. (2008) 47:251. 10.1007/s00394-008-0719-6 PubMed DOI
Franco LP, Silveira AGZ, Lima RSDAV, Horst MA, Cominetti C. APOE genotype associates with food consumption and body composition to predict dyslipidaemia in Brazilian adults with normal-weight obesity syndrome. Clin Nutr. (2017) 37:1722–27. 10.1016/j.clnu.2017.07.002 PubMed DOI
Romero-Corral A, Somers VK, Sierra-Johnson J, Korenfeld Y, Boarin S, Korinek J, et al. . Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. (2009) 31:737–46. 10.1093/eurheartj/ehp487 PubMed DOI PMC
Madeira FB, Silva AA, Veloso HF, Goldani MZ, Kac G, Cardoso VC, et al. . Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS ONE (2013) 8:e60673. 10.1371/journal.pone.0060673 PubMed DOI PMC
Renzo L, Galvano F, Orlandi C, Bianchi A, Giacomo C, Fauci L, et al. . Oxidative stress in normal-weight obese syndrome. Obesity (2010) 18:2125–30. 10.1038/oby.2010.50 PubMed DOI
Kang S, Kyung C, Park JS, Kim S, Lee SP, Kim MK, et al. . Subclinical vascular inflammation in subjects with normal weight obesity and its association with body fat: an 18 F-FDG-PET/CT study. Cardiovasc Diabetol. (2014) 13:70. 10.1186/1475-2840-13-70 PubMed DOI PMC
Olafsdottir AS, Torfadottir JE, Arngrimsson SA. Health behavior and metabolic risk factors associated with normal weight obesity in adolescents. PLoS ONE (2016) 11:e0161451. 10.1371/journal.pone.0161451 PubMed DOI PMC
Steffl M, Chrudimsky J, Tufano JJ. Using relative handgrip strength to identify children at risk of sarcopenic obesity. PLoS ONE (2017) 12:e0177006. 10.1371/journal.pone.0177006 PubMed DOI PMC
Wiklund P, Törmäkangas T, Shi Y, Wu N, Vainionpää A, Alen M, et al. . Normal-weight obesity and cardiometabolic risk: a 7-year longitudinal study in girls from prepuberty to early adulthood. Obesity (2017) 25:1077–82. 10.1002/oby.21838 PubMed DOI
Musalek M, Kokstejn J, Papez P, Scheffler C, Mumm R, Czernitzki AF, et al. . Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. Anthropol Anz. (2017) 74:203–12. 10.1127/anthranz/2017/0752 PubMed DOI
Parízková J. Body Fat and Physical Fitness: Body Composition and Lipid Metabolism in Different Regimes of Physical Activity. The Hague: Martinus Nijhoff B.V./Medical Division; (1977).
Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, et al. . physical activity and bone measures in young children: the iowa bone development study. Pediatrics (2001) 107:1387–93. 10.1542/peds.107.6.1387 PubMed DOI
Janz KF, Rao S, Baumann HJ, Schultz JL. Measuring children's vertical ground reaction forces with accelerometry during walking, running, and jumping: the iowa bone development study. Pediatr Exerc Sci. (2003) 15:34–43. 10.1123/pes.15.1.34 DOI
Parízková J, Hills A. Childhood Obesity. Prevention and Treatment. 2nd ed Boca Raton, FL; London; New York, NY: CRC Press, Taylor and Francis Group; (2010).
Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. (2014) 44:1209–23. 10.1007/s40279-014-0196-4 PubMed DOI
Rietsch K, Eccard JA, Scheffler C. Decreased external skeletal robustness due to reduced physical activity? Am J Hum Biol. (2013) 25:404–10. 10.1002/ajhb.22389 PubMed DOI
Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. (2008) 32:1. 10.1038/sj.ijo.0803774 PubMed DOI
Benson AC, Torode ME, Fiatarone Singh MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int J Pediatr Obes. (2006) 1:222–31. 10.1080/17477160600962864 PubMed DOI
Steene-Johannessen J, Anderssen SA, Kolle E, Andersen LB. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exer. (2009) 41:1361–7. 10.1249/MSS.0b013e31819aaae5 PubMed DOI
Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. (2007) 150:12–7. 10.1016/j.jpeds.2006.08.042 PubMed DOI
Magnussen CG, Schmidt MD, Dwyer T, Venn A. Muscular fitness and clustered cardiovascular disease risk in australian youth. Eur J Appl Physiol. (2012) 112:3167–71. 10.1007/s00421-011-2286-4 PubMed DOI
Daniels SR. The consequences of childhood overweight and obesity. Future Child. (2006) 16:47–67. 10.1353/foc.2006.0004 PubMed DOI
Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. Br Med J. (2007) 335:194–201. 10.1136/bmj.39238.399444.55 PubMed DOI PMC
Vignerová J, Riedlová J, Bláha P, Kobzová J, Krejčovský L, Brabec M, et al. . 6. Celostátní antropologický výzkum dětí a mládeŽe 2001 Ceská republika. In: Souhrnné výsledky. 6th Nation-wide Anthropological Survey of Children and Adolescents 2001 Czech Republic. Summary Results (2006). PubMed
Erdfelder E, Faul F, Buchner A. GPOWER: A General Power Analysis Program. Behav Res Methods Instr Comput. (1996) 28:1–11. 10.3758/BF03203630 DOI
VanVoorhis CW, Morgan BL. Understanding power and rules of thumb for determining sample sizes. Tutor Quant Methods Psychol. (2007) 3:43–50. 10.20982/tqmp.03.2.p043 DOI
Rusticus SA, Lovato CY. Impact of sample size and variability on the power and type I error rates of equivalence tests: a simulation study. Prac Assess Res Eval. (2014) 19:2.
Milliken GA, Johnson DE. Analysis of Messy Data, Volume I: Designed experiments. Belmont, CA: Wadsworth. Inc. (1984).
Lohman TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books; (1988).
Carter JL, Heath BH. Somatotyping: Development and Applications. Vol. 5. Cambridge: Cambridge University Press; (1990).
Vignerová J, Bláha P. Sledování rustu českých dětí a dospívajících. Norma, vyhublost, obezita 1. vydání. Praha, Státní zdravotní ústav, Translation: Investigation of Growth in Czech Children and Adolescence. Norm, Emaciation, Obesity. 1st ed. Praha: Státní zdravotní ústav (2001).
Frisancho AR. Anthropometric Standards for the Assessment of Growth and Nutritional Status. Michigan: University of Michigan Press; (1990).
Slaughter MH, Lohman TG, Boileau R, Horswill CA, Stillman RJ, Van Loan MD, et al. . Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. (1988) 60:709–23. PubMed
Rolland-Cachera MF, Brambilla P, Manzoni P, Akrout M, Sironi S, Del Maschio A, et al. . Body composition assessed on the basis of arm circumference and triceps skinfold thickness: a new index validated in children by magnetic resonance imaging. Am J Clin Nutr. (1997) 65:1709–13. 10.1093/ajcn/65.6.1709 PubMed DOI
Kirk RE. Practical significance: a concept whose time has come. Educ. Psychol. Meas. (1996) 56:746–59.
Hintze J. NCSS 2007. NCSS, LLC. Kaysville,UT. USA. Available online at: www.ncss.com (2007).
Lohman TG, Houtkooper L, Going SB. Body fat measurement goes high-tech: not all are created equal. ACSM's Health Fit J. (1997) 1:30–5.
Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index–. Am J Clin Nutr. (2000) 72:694–701. 10.1093/ajcn/72.3.694 PubMed DOI
Ilich JZ, Skugor M, Hangartner T, Baosh A, Matkovic V. Relation of nutrition, body composition and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr. (1998) 17:136–47. 10.1080/07315724.1998.10718739 PubMed DOI
Sabatier JP, Guaydier-Souquieres G, Benmalek A, Marcelli C. Evolution of lumbar bone mineral content during adolescence and adulthood: a longitudinal study in 395 healthy females 10–24 years of age and 206 premenopausal women. Osteopor Int. (1999) 9:476–82. 10.1007/s001980050173 PubMed DOI
Warden SJ, Roosa SMM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. . Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci USA. (2014) 111:5337–42. 10.1073/pnas.1321605111 PubMed DOI PMC
Sedlak P, Parízková J, Daniš R, Dvoráková H, Vignerová J. Secular changes of adiposity and motor development in Czech preschool children: Lifestyle changes in fifty-five year retrospective study. BioMed Res Int. (2015) 2015:823841. 10.1155/2015/823841 PubMed DOI PMC
Sedlak P, Parízková J, Procházková L, Cvrčková L, Dvoráková H. Secular changes of adiposity in czech children aged from 3 to 6 years: latent obesity in preschool age. Biomed Res. Int. (2017) 2017:2478461. 10.1155/2017/2478461 PubMed DOI PMC
Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anatom Record (1987) 219:1–9. PubMed
Frost HM. The Laws of Bone Structure. Springfield, IL: Charles C. Thomas; (1964).
Frost HM. Bone Modeling and Skeletal Modeling Errors. Springfield: Charles C. Thomas; (1973).
Frost HM. Why do marathon runners have less bone than weight lifters? A vital-biomechanical view and explanation. Bone (1997) 20:183–9. PubMed
Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC, Jr. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. (1994) 125:201–7. PubMed
Rietsch K, Godina E, Scheffler C. Decreased external skeletal robustness in schoolchildren–a global trend? Ten year comparison of Russian and German data. PLoS ONE (2013) 8:e68195 10.1371/journal.pone.0068195 PubMed DOI PMC
Scheffler C. The change of skeletal robustness of 6-12 years old children in Brandenburg (Germany)-comparison of body composition 1999-2009. Anthropol Anzeig. (2011) 68:153–65. 10.1127/0003-5548/2011/0095 PubMed DOI
Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. . Age and gender differences in objectively measured physical activity in youth. Med Sci Sport Exerc. (2002) 34:350–5. 10.1097/00005768-200202000-00025 PubMed DOI
Vilhjalmsson R, Kristjansdottir G. Gender differences in physical activity in older children and adolescents: the central role of organized sport. Soc Sci Med. (2003) 56:363–74. 10.1016/S0277-9536(02)00042-4 PubMed DOI
Marques A, Ekelund U, Sardinha LB. Associations between organized sports participation and objectively measured physical activity, sedentary time and weight status in youth. J Sci Med Sport (2016) 19:154–7. 10.1016/j.jsams.2015.02.007 PubMed DOI PMC
Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM. Overweight and obese children have low bone mass and area for their weight. Int J Obes. (2000) 24:627. 10.1038/sj.ijo.0801207 PubMed DOI
Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone (2005) 36:568–76. 10.1016/j.bone.2004.12.003 PubMed DOI
Marten N, Olds T. Physical activity: patterns of active transport in 11–12 year old Australian children. Aust N Z J Public Health (2004) 28:167–72. 10.1111/j.1467-842X.2004.tb00931.x PubMed DOI
Jiménez-Pavón D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes. (2010) 5:3–18. 10.3109/17477160903067601 PubMed DOI
Impaired Cardiorespiratory Fitness and Muscle Strength in Children with Normal-Weight Obesity