Impaired Cardiorespiratory Fitness and Muscle Strength in Children with Normal-Weight Obesity
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33317083
PubMed Central
PMC7763693
DOI
10.3390/ijerph17249198
PII: ijerph17249198
Knihovny.cz E-resources
- Keywords
- cardiorespiratory, children, muscle strength, normal-weight obesity, physical fitness,
- MeSH
- Child MeSH
- Cardiorespiratory Fitness * physiology MeSH
- Humans MeSH
- Overweight epidemiology MeSH
- Pediatric Obesity * epidemiology MeSH
- Cross-Sectional Studies MeSH
- Sex Factors MeSH
- Muscle Strength * physiology MeSH
- Body Weight MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Despite the health-related implications of normal-weight obesity in children, very little research has explored the fundamental associations between this status and important long-term health parameters. Therefore, the aim of the current study was to investigate the physical fitness of children with normal-weight obesity, in comparison to normal-weight non obese and overweight and obese counterparts. A total of 328 middle-school-aged children (9.8 ± 0.5 y) took part in this study (n = 44 normal-weight obese; n = 237; normal-weight non obese; n = 47 overweight and obese). Height, weight, and body-fatness were measured. Four physical fitness tests were conducted: (1) Multistage fitness test; (2) shuttle run 4 × 10 m; (3) sit-ups for 60 s; (4) the broad jump. Welch's analysis of variance (ANOVA), stratified by sex, with post-hoc testing where necessary, was performed. Children with normal-weight obesity had significantly (p < 0.01) lower cardio-respiratory and muscular fitness than normal-weight non obese peers. In addition, normal-weight obese and overweight and obese boys had comparable deficits in strength and explosiveness of lower limbs, speed coordination, and endurance, compared to normal-weight non obese counterparts. Normal-weight obese children appear to have similar deficits in PF as their overweight and obese peers, compared to normal-weight non obese counterparts, whilst boys had larger deficits than girls.
See more in PubMed
Simons-Morton B.G., Parcel G.S., O’Hara N.M., Blair S.N., Pate R.R. Health-related physical fitness in childhood: Status and recommendations. Ann. Rev. Public Health. 1988;9:403–425. doi: 10.1146/annurev.pu.09.050188.002155. PubMed DOI
DuBose K.D., Eisenmann J.C., Donnelly J.E. Aerobic fitness attenuates the metabolic syndrome score in normal-weight, at-risk-for-overweight, and overweight children. Pediatrics. 2007;120:e1262–e1268. doi: 10.1542/peds.2007-0443. PubMed DOI
Stodden D.F., Goodway J.D., Langendorfer S.J., Roberton M.A., Rudisill M.E., Garcia C., Garcia L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest. 2008;60:290–306. doi: 10.1080/00336297.2008.10483582. DOI
Torrijos-Niño C., Martínez-Vizcaíno V., Pardo-Guijarro M.J., García-Prieto J.C., Arias-Palencia N.M., Sánchez-López M. Physical fitness, obesity, and academic achievement in schoolchildren. J. Pediatr. 2014;165:104–109. doi: 10.1016/j.jpeds.2014.02.041. PubMed DOI
De Lorenzo A., Del Gobbo V., Premrov M.G., Bigioni M., Galvano F., Di Renzo L. Normal-weight obese syndrome: Early inflammation? Am. J. Clin. Nutr. 2007;85:40–45. doi: 10.1093/ajcn/85.1.40. PubMed DOI
Jean N., Somers V.K., Sochor O., Medina-Inojosa J., Llano E.M., Lopez-Jimenez F. Normal-weight obesity: Implications for cardiovascular health. Curr. Atheroscler. Rep. 2014;16:464. doi: 10.1007/s11883-014-0464-7. PubMed DOI
Musalek M., Pařízková J., Godina E., Bondareva E., Kokštejn J., Jírovec J., Vokounová Š. Poor skeletal robustness on lower extremities and weak lean mass development on upper arm and calf: Normal weight obesity in middle-school-aged children (9 to 12) Front. Pediatr. 2018;6:371. doi: 10.3389/fped.2018.00371. PubMed DOI PMC
Frost H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. Off. Publ. Am. Assoc. Anat. 2003;275:1081–1101. doi: 10.1002/ar.a.10119. PubMed DOI
Olafsdottir A.S., Torfadottir J.E., Arngrimsson S.A. Health behavior and metabolic risk factors associated with normal weight obesity in adolescents. PLoS ONE. 2016;11:e0161451. doi: 10.1371/journal.pone.0161451. PubMed DOI PMC
Ruderman N., Chisholm D., Pi-Sunyer X., Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47:699–713. doi: 10.2337/diabetes.47.5.699. PubMed DOI
Zhang M., Schumann M., Huang T., Törmäkangas T., Cheng S. Normal weight obesity and physical fitness in Chinese university students: An overlooked association. BMC Public Health. 2018;18:1334. doi: 10.1186/s12889-018-6238-3. PubMed DOI PMC
Malina R.M., Bouchard C., Bar-Or O. Growth, Maturation, and Physical Activity. Human Kinetics; Champaign, IL, USA: 2004.
Haga M. The relationship between physical fitness and motor competence in children. Child Care Health Dev. 2008;34:329–334. doi: 10.1111/j.1365-2214.2008.00814.x. PubMed DOI
Musalek M., Kokstejn J., Papez P., Scheffler C., Mumm R., Czernitzki A.F., Koziel S. Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. Anthropol. Anz. 2017;74:203–212. doi: 10.1127/anthranz/2017/0752. PubMed DOI
Magnussen C.G., Schmidt M.D., Dwyer T., Venn A. Muscular fitness and clustered cardiovascular disease risk in Australian youth. Eur. J. Appl. Physiol. 2012;112:3167–3171. doi: 10.1007/s00421-011-2286-4. PubMed DOI
Vignerová J., Riedlová J., Bláha P., Kobzová J., Krejčovský L., Brabec M., Hrušková M. Souhrnné Výsledky, 6th Nation-Wide Anthropological Survey of Children and Adolescents 2001 Czech Republic. State Health Institute; Prague, Czech Republic: 2006. 6. Celostátní antropologický výzkum dětí a mládeže 2001 Česká republika. Summary Results.
Di Renzo L., Sarlo F., Petramala L., Iacopino L., Monteleone G., Colica C., De Lorenzo A. Association between−308 G/A TNF-α polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in Normal-weightly obese syndrome. Dis. Markers. 2013;35:615–623. doi: 10.1155/2013/983424. PubMed DOI PMC
Lohman T.G., Roche A.F., Martorell R. Anthropometric Standardization Reference Manual. Human Kinetics Books; Champaign, IL, USA: 1988.
Carter J.L., Heath B.H. Somatotyping: Development and Applications. Volume 5 Cambridge University Press; Cambridge, UK: 1990.
Slaughter M.H., Lohman T.G., Boileau R., Horswill C.A., Stillman R.J., Van Loan M.D., Bemben D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988;60:709–723. PubMed
Chytráčkovč J., Měkota K. Unifittest (6–60): Příručka pro Manuální a počÍtačové Hodnocení Základní Motorické Výkonnosti a Vybraných Charakteristik Tĕlesné Stavby Mládeže a Dospĕlých v České Republice. The Test Manual for Computer Assessing of Physical Fitness and Selected Characteristic of Body Status in Youth and Adults in Czech Republic. Univerzita Karlova, Fakulta Tĕlesné Výchovy a Sportu; Praha, Czech Republic: 2002.
Sedgewick P. Log transformation of data. BMJ. 2012;345:e6727. doi: 10.1136/bmj.e6727. DOI
Feldman A.G. Once more on the equilibrium-point hypothesis (λ model) for motor control. J. Mot. Behav. 1986;18:17–54. doi: 10.1080/00222895.1986.10735369. PubMed DOI
Madeira F.B., Silva A.A., Veloso H.F., Goldani M.Z., Kac G., Cardoso V.C., Bettiol H., Barbieri M.A. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS ONE. 2013;8:e60673. doi: 10.1371/journal.pone.0060673. PubMed DOI PMC
Smith J.J., Eather N., Morgan P.J., Plotnikoff R.C., Faigenbaum A.D., Lubans D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209–1223. doi: 10.1007/s40279-014-0196-4. PubMed DOI
Ortega F.B., Ruiz J.R., Castillo M.J., Sjöström M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008;32:1–11. doi: 10.1038/sj.ijo.0803774. PubMed DOI
Malina R.M. Physical activity and fitness: Pathways from childhood to adulthood. Am. J. Hum. Biol. Off. J. Hum. Biol. Assoc. 2001;13:162–172. doi: 10.1002/1520-6300(200102/03)13:2<162::AID-AJHB1025>3.0.CO;2-T. PubMed DOI
Donnelly J.E., Hillman C.H., Castelli D., Etnier J.L., Lee S., Tomporowski P., Lambourne K., Szabo-Reed A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016;48:1197–1222. doi: 10.1249/MSS.0000000000000901. PubMed DOI PMC
Telama R., Yang X., Viikari J., Välimäki I., Wanne O., Raitakari O. Physical activity from childhood to adulthood: A 21-year tracking study. Am. J. Prev. Med. 2005;28:267–273. doi: 10.1016/j.amepre.2004.12.003. PubMed DOI
Lang J., Tomkinson G., Janssen I., Ruiz J., Ortega F., Leger L., Tremblay M. Making a Case for Cardiorespiratory Fitness Surveillance Among Children and Youth. Exerc. Sport Sci. Rev. 2018;46:66–75. doi: 10.1249/JES.0000000000000138. PubMed DOI
Strel J. Analysis of the Program Healthy Lifestyle for the Years 2010/11 and 2011/12 [Article in Slovenian] Institute for Sport Planica; Ljubljana, Slovenia: 2013.
Tremblay M.S., Barnes J.D., Gonzalez S.A., Katzmarzyk P.T., Onywera V.O., Reilly J.J., Tomkinson G.R. Global Matrix 2.0 Research Team. Global Matrix 2.0: Report card grades on the physical activity of children and youth comparing 38 countries. J. Phys. Act. Health. 2016;13(Suppl. S2):S343–S366. doi: 10.1123/jpah.2016-0594. PubMed DOI
Khamis H.J., Roche A.F. Predicting adult stature without using skeletal age: The Khamis-Roche method. Pediatrics. 1994;94:504–507. PubMed
Roche A.F., Tyleshevski F., Rogers E. Non-invasive measurements of physical maturity in children. Res. Q. Exerc. Sport. 1983;54:364–371. doi: 10.1080/02701367.1983.10605321. DOI