• This record comes from PubMed

Impaired Cardiorespiratory Fitness and Muscle Strength in Children with Normal-Weight Obesity

. 2020 Dec 09 ; 17 (24) : . [epub] 20201209

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Despite the health-related implications of normal-weight obesity in children, very little research has explored the fundamental associations between this status and important long-term health parameters. Therefore, the aim of the current study was to investigate the physical fitness of children with normal-weight obesity, in comparison to normal-weight non obese and overweight and obese counterparts. A total of 328 middle-school-aged children (9.8 ± 0.5 y) took part in this study (n = 44 normal-weight obese; n = 237; normal-weight non obese; n = 47 overweight and obese). Height, weight, and body-fatness were measured. Four physical fitness tests were conducted: (1) Multistage fitness test; (2) shuttle run 4 × 10 m; (3) sit-ups for 60 s; (4) the broad jump. Welch's analysis of variance (ANOVA), stratified by sex, with post-hoc testing where necessary, was performed. Children with normal-weight obesity had significantly (p < 0.01) lower cardio-respiratory and muscular fitness than normal-weight non obese peers. In addition, normal-weight obese and overweight and obese boys had comparable deficits in strength and explosiveness of lower limbs, speed coordination, and endurance, compared to normal-weight non obese counterparts. Normal-weight obese children appear to have similar deficits in PF as their overweight and obese peers, compared to normal-weight non obese counterparts, whilst boys had larger deficits than girls.

See more in PubMed

Simons-Morton B.G., Parcel G.S., O’Hara N.M., Blair S.N., Pate R.R. Health-related physical fitness in childhood: Status and recommendations. Ann. Rev. Public Health. 1988;9:403–425. doi: 10.1146/annurev.pu.09.050188.002155. PubMed DOI

DuBose K.D., Eisenmann J.C., Donnelly J.E. Aerobic fitness attenuates the metabolic syndrome score in normal-weight, at-risk-for-overweight, and overweight children. Pediatrics. 2007;120:e1262–e1268. doi: 10.1542/peds.2007-0443. PubMed DOI

Stodden D.F., Goodway J.D., Langendorfer S.J., Roberton M.A., Rudisill M.E., Garcia C., Garcia L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest. 2008;60:290–306. doi: 10.1080/00336297.2008.10483582. DOI

Torrijos-Niño C., Martínez-Vizcaíno V., Pardo-Guijarro M.J., García-Prieto J.C., Arias-Palencia N.M., Sánchez-López M. Physical fitness, obesity, and academic achievement in schoolchildren. J. Pediatr. 2014;165:104–109. doi: 10.1016/j.jpeds.2014.02.041. PubMed DOI

De Lorenzo A., Del Gobbo V., Premrov M.G., Bigioni M., Galvano F., Di Renzo L. Normal-weight obese syndrome: Early inflammation? Am. J. Clin. Nutr. 2007;85:40–45. doi: 10.1093/ajcn/85.1.40. PubMed DOI

Jean N., Somers V.K., Sochor O., Medina-Inojosa J., Llano E.M., Lopez-Jimenez F. Normal-weight obesity: Implications for cardiovascular health. Curr. Atheroscler. Rep. 2014;16:464. doi: 10.1007/s11883-014-0464-7. PubMed DOI

Musalek M., Pařízková J., Godina E., Bondareva E., Kokštejn J., Jírovec J., Vokounová Š. Poor skeletal robustness on lower extremities and weak lean mass development on upper arm and calf: Normal weight obesity in middle-school-aged children (9 to 12) Front. Pediatr. 2018;6:371. doi: 10.3389/fped.2018.00371. PubMed DOI PMC

Frost H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. Off. Publ. Am. Assoc. Anat. 2003;275:1081–1101. doi: 10.1002/ar.a.10119. PubMed DOI

Olafsdottir A.S., Torfadottir J.E., Arngrimsson S.A. Health behavior and metabolic risk factors associated with normal weight obesity in adolescents. PLoS ONE. 2016;11:e0161451. doi: 10.1371/journal.pone.0161451. PubMed DOI PMC

Ruderman N., Chisholm D., Pi-Sunyer X., Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47:699–713. doi: 10.2337/diabetes.47.5.699. PubMed DOI

Zhang M., Schumann M., Huang T., Törmäkangas T., Cheng S. Normal weight obesity and physical fitness in Chinese university students: An overlooked association. BMC Public Health. 2018;18:1334. doi: 10.1186/s12889-018-6238-3. PubMed DOI PMC

Malina R.M., Bouchard C., Bar-Or O. Growth, Maturation, and Physical Activity. Human Kinetics; Champaign, IL, USA: 2004.

Haga M. The relationship between physical fitness and motor competence in children. Child Care Health Dev. 2008;34:329–334. doi: 10.1111/j.1365-2214.2008.00814.x. PubMed DOI

Musalek M., Kokstejn J., Papez P., Scheffler C., Mumm R., Czernitzki A.F., Koziel S. Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. Anthropol. Anz. 2017;74:203–212. doi: 10.1127/anthranz/2017/0752. PubMed DOI

Magnussen C.G., Schmidt M.D., Dwyer T., Venn A. Muscular fitness and clustered cardiovascular disease risk in Australian youth. Eur. J. Appl. Physiol. 2012;112:3167–3171. doi: 10.1007/s00421-011-2286-4. PubMed DOI

Vignerová J., Riedlová J., Bláha P., Kobzová J., Krejčovský L., Brabec M., Hrušková M. Souhrnné Výsledky, 6th Nation-Wide Anthropological Survey of Children and Adolescents 2001 Czech Republic. State Health Institute; Prague, Czech Republic: 2006. 6. Celostátní antropologický výzkum dětí a mládeže 2001 Česká republika. Summary Results.

Di Renzo L., Sarlo F., Petramala L., Iacopino L., Monteleone G., Colica C., De Lorenzo A. Association between−308 G/A TNF-α polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in Normal-weightly obese syndrome. Dis. Markers. 2013;35:615–623. doi: 10.1155/2013/983424. PubMed DOI PMC

Lohman T.G., Roche A.F., Martorell R. Anthropometric Standardization Reference Manual. Human Kinetics Books; Champaign, IL, USA: 1988.

Carter J.L., Heath B.H. Somatotyping: Development and Applications. Volume 5 Cambridge University Press; Cambridge, UK: 1990.

Slaughter M.H., Lohman T.G., Boileau R., Horswill C.A., Stillman R.J., Van Loan M.D., Bemben D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988;60:709–723. PubMed

Chytráčkovč J., Měkota K. Unifittest (6–60): Příručka pro Manuální a počÍtačové Hodnocení Základní Motorické Výkonnosti a Vybraných Charakteristik Tĕlesné Stavby Mládeže a Dospĕlých v České Republice. The Test Manual for Computer Assessing of Physical Fitness and Selected Characteristic of Body Status in Youth and Adults in Czech Republic. Univerzita Karlova, Fakulta Tĕlesné Výchovy a Sportu; Praha, Czech Republic: 2002.

Sedgewick P. Log transformation of data. BMJ. 2012;345:e6727. doi: 10.1136/bmj.e6727. DOI

Feldman A.G. Once more on the equilibrium-point hypothesis (λ model) for motor control. J. Mot. Behav. 1986;18:17–54. doi: 10.1080/00222895.1986.10735369. PubMed DOI

Madeira F.B., Silva A.A., Veloso H.F., Goldani M.Z., Kac G., Cardoso V.C., Bettiol H., Barbieri M.A. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS ONE. 2013;8:e60673. doi: 10.1371/journal.pone.0060673. PubMed DOI PMC

Smith J.J., Eather N., Morgan P.J., Plotnikoff R.C., Faigenbaum A.D., Lubans D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209–1223. doi: 10.1007/s40279-014-0196-4. PubMed DOI

Ortega F.B., Ruiz J.R., Castillo M.J., Sjöström M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008;32:1–11. doi: 10.1038/sj.ijo.0803774. PubMed DOI

Malina R.M. Physical activity and fitness: Pathways from childhood to adulthood. Am. J. Hum. Biol. Off. J. Hum. Biol. Assoc. 2001;13:162–172. doi: 10.1002/1520-6300(200102/03)13:2<162::AID-AJHB1025>3.0.CO;2-T. PubMed DOI

Donnelly J.E., Hillman C.H., Castelli D., Etnier J.L., Lee S., Tomporowski P., Lambourne K., Szabo-Reed A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016;48:1197–1222. doi: 10.1249/MSS.0000000000000901. PubMed DOI PMC

Telama R., Yang X., Viikari J., Välimäki I., Wanne O., Raitakari O. Physical activity from childhood to adulthood: A 21-year tracking study. Am. J. Prev. Med. 2005;28:267–273. doi: 10.1016/j.amepre.2004.12.003. PubMed DOI

Lang J., Tomkinson G., Janssen I., Ruiz J., Ortega F., Leger L., Tremblay M. Making a Case for Cardiorespiratory Fitness Surveillance Among Children and Youth. Exerc. Sport Sci. Rev. 2018;46:66–75. doi: 10.1249/JES.0000000000000138. PubMed DOI

Strel J. Analysis of the Program Healthy Lifestyle for the Years 2010/11 and 2011/12 [Article in Slovenian] Institute for Sport Planica; Ljubljana, Slovenia: 2013.

Tremblay M.S., Barnes J.D., Gonzalez S.A., Katzmarzyk P.T., Onywera V.O., Reilly J.J., Tomkinson G.R. Global Matrix 2.0 Research Team. Global Matrix 2.0: Report card grades on the physical activity of children and youth comparing 38 countries. J. Phys. Act. Health. 2016;13(Suppl. S2):S343–S366. doi: 10.1123/jpah.2016-0594. PubMed DOI

Khamis H.J., Roche A.F. Predicting adult stature without using skeletal age: The Khamis-Roche method. Pediatrics. 1994;94:504–507. PubMed

Roche A.F., Tyleshevski F., Rogers E. Non-invasive measurements of physical maturity in children. Res. Q. Exerc. Sport. 1983;54:364–371. doi: 10.1080/02701367.1983.10605321. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...